Spaces:
Runtime error
Runtime error
nehalelkaref
commited on
Commit
•
2465f17
1
Parent(s):
337a697
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,16 @@
|
|
1 |
from flask import Flask, jsonify, request, render_template
|
2 |
from transformers import AutoAdapterModel, AutoTokenizer, TextClassificationPipeline
|
3 |
|
4 |
-
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
# fusion_adapter = Repository(local_dir="fusion_adapter", clone_from="nehalelkaref/region_fusion")
|
11 |
|
12 |
-
|
13 |
-
# model.load_adapter("nehalelkaref/aoc4_adapter", set_active=True, with_head=False, source="hf")
|
14 |
-
# model.load_adapter("nehalelkaref/sarcasm_adapter", set_active=True, with_head=False, source="hf")
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
# pipe = TextClassificationPipeline(tokenizer=tokenizer, model=model)
|
19 |
|
20 |
|
21 |
app = Flask(__name__)
|
@@ -26,8 +21,15 @@ def home():
|
|
26 |
|
27 |
@app.route('/classify', methods = ['POST'])
|
28 |
def classify():
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
if __name__ == "__main__":
|
33 |
app.run()
|
|
|
1 |
from flask import Flask, jsonify, request, render_template
|
2 |
from transformers import AutoAdapterModel, AutoTokenizer, TextClassificationPipeline
|
3 |
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained("UBC-NLP/MARBERT")
|
5 |
+
model = AutoAdapterModel.from_pretrained("UBC-NLP/MARBERT")
|
6 |
|
7 |
+
model.load_adapter("nehalelkaref/aoc3_adapter", set_active=True, with_head=False, source="hf")
|
8 |
+
model.load_adapter("nehalelkaref/aoc4_adapter", set_active=True, with_head=False, source="hf")
|
9 |
+
model.load_adapter("nehalelkaref/sarcasm_adapter", set_active=True, with_head=False, source="hf")
|
|
|
10 |
|
11 |
+
model.load_adapter_fusion("nehalelkaref/region_fusion",with_head=True, set_active=True, source="hf")
|
|
|
|
|
12 |
|
13 |
+
pipe = TextClassificationPipeline(tokenizer=tokenizer, model=model)
|
|
|
|
|
14 |
|
15 |
|
16 |
app = Flask(__name__)
|
|
|
21 |
|
22 |
@app.route('/classify', methods = ['POST'])
|
23 |
def classify():
|
24 |
+
text = request.json['inputs']
|
25 |
+
|
26 |
+
prediction = pipe(text)
|
27 |
+
labels = {"LABEL_0":"GULF", "LABEL_1":"LEVANT","LABEL_2":"EGYPT"}
|
28 |
+
regions = []
|
29 |
+
for res in prediction:
|
30 |
+
regions.append(labels[res['label']])
|
31 |
+
|
32 |
+
return render_template('prediction.html', output=regions[0])
|
33 |
|
34 |
if __name__ == "__main__":
|
35 |
app.run()
|