Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| from serpapi import GoogleSearch | |
| # SERP API key (replace with your actual key) | |
| SERP_API_KEY = "785988650046bf6eddbc597cbf87330e2d53f8a3bacb4bac62a90ab1ecfa2445" | |
| def search_and_answer(question): | |
| try: | |
| # Step 1: Fetch search results from Google using SERP API | |
| search_params = { | |
| "q": question, | |
| "hl": "en", | |
| "gl": "us", | |
| "api_key": SERP_API_KEY | |
| } | |
| search = GoogleSearch(search_params) | |
| results = search.get_dict() | |
| # Extract top 3 organic search results | |
| extracted_results = [] | |
| for result in results.get("organic_results", [])[:3]: | |
| extracted_results.append({ | |
| "title": result.get("title"), | |
| "link": result.get("link"), | |
| "snippet": result.get("snippet", "No description available.") | |
| }) | |
| if not extracted_results: | |
| return pd.DataFrame(columns=["Answer", "Source", "Confidence Score"]) | |
| # Step 2: Prepare final dataframe with sources and confidence scores | |
| data = [] | |
| for i, res in enumerate(extracted_results): | |
| confidence_score = round(1 - (i * 0.2), 2) # Simulated confidence score | |
| data.append({ | |
| "Answer": res["snippet"], | |
| "Source": res["link"], | |
| "Confidence Score": confidence_score | |
| }) | |
| df = pd.DataFrame(data) | |
| return df | |
| except Exception as e: | |
| return pd.DataFrame({"Error": [str(e)]}) | |
| # Step 3: Create Gradio Interface | |
| iface = gr.Interface( | |
| fn=search_and_answer, | |
| inputs=gr.Textbox(label="Ask a Question"), | |
| outputs=gr.Dataframe(headers=["Answer", "Source", "Confidence Score"]), | |
| title="AI-Powered Q&A System ", | |
| description="Enter a question and get top 3 answers from web search with confidence scores." | |
| ) | |
| # Launch the Gradio app with debug enabled | |
| iface.launch(share=True, debug=True) | |