Spaces:
Sleeping
Sleeping
negismohit123
commited on
Commit
•
4e4b114
1
Parent(s):
446ca31
Update main.py
Browse files
main.py
CHANGED
@@ -1,110 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
45 |
-
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
|
46 |
-
return_full_text=False)
|
47 |
-
output = ""
|
48 |
-
|
49 |
-
for response in stream:
|
50 |
-
output += response.token.text
|
51 |
-
yield [(prompt, output)]
|
52 |
-
history.append((prompt, output))
|
53 |
-
yield history
|
54 |
-
|
55 |
-
|
56 |
-
def clear_fn():
|
57 |
-
return None
|
58 |
-
|
59 |
-
|
60 |
-
rand_val = random.randint(1, 1111111111111111)
|
61 |
-
|
62 |
-
|
63 |
-
def check_rand(inp, val):
|
64 |
-
if inp is True:
|
65 |
-
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
|
66 |
-
else:
|
67 |
-
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
68 |
-
|
69 |
-
|
70 |
-
with gr.Blocks() as app:
|
71 |
-
gr.HTML(
|
72 |
-
"""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1></center>""")
|
73 |
-
with gr.Group():
|
74 |
-
with gr.Row():
|
75 |
-
client_choice = gr.Dropdown(label="Models", type='index', choices=[c for c in models], value=models[0],
|
76 |
-
interactive=True)
|
77 |
-
chat_b = gr.Chatbot(height=500)
|
78 |
-
with gr.Group():
|
79 |
-
with gr.Row():
|
80 |
-
with gr.Column(scale=1):
|
81 |
-
with gr.Group():
|
82 |
-
rand = gr.Checkbox(label="Random Seed", value=True)
|
83 |
-
seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
|
84 |
-
tokens = gr.Slider(label="Max new tokens", value=6400, minimum=0, maximum=8000, step=64,
|
85 |
-
interactive=True, visible=True, info="The maximum number of tokens")
|
86 |
-
with gr.Column(scale=1):
|
87 |
-
with gr.Group():
|
88 |
-
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
89 |
-
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
90 |
-
rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
|
91 |
-
|
92 |
-
with gr.Group():
|
93 |
-
with gr.Row():
|
94 |
-
with gr.Column(scale=3):
|
95 |
-
sys_inp = gr.Textbox(label="System Prompt (optional)")
|
96 |
-
inp = gr.Textbox(label="Prompt")
|
97 |
-
with gr.Row():
|
98 |
-
btn = gr.Button("Chat")
|
99 |
-
stop_btn = gr.Button("Stop")
|
100 |
-
clear_btn = gr.Button("Clear")
|
101 |
-
|
102 |
-
chat_sub = inp.submit(check_rand, [rand, seed], seed).then(chat_inf,
|
103 |
-
[sys_inp, inp, chat_b, client_choice, seed, temp, tokens,
|
104 |
-
top_p, rep_p], chat_b)
|
105 |
-
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf,
|
106 |
-
[sys_inp, inp, chat_b, client_choice, seed, temp, tokens, top_p,
|
107 |
-
rep_p], chat_b)
|
108 |
-
stop_btn.click(None, None, None, cancels=[go, chat_sub])
|
109 |
-
clear_btn.click(clear_fn, None, [chat_b])
|
110 |
-
app.queue(default_concurrency_limit=10).launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from huggingface_hub import InferenceClient
|
3 |
+
# import random
|
4 |
+
|
5 |
+
# models = [
|
6 |
+
# "google/gemma-7b",
|
7 |
+
# "google/gemma-7b-it",
|
8 |
+
# "google/gemma-2b",
|
9 |
+
# "google/gemma-2b-it"
|
10 |
+
# ]
|
11 |
+
|
12 |
+
# clients = []
|
13 |
+
# for model in models:
|
14 |
+
# clients.append(InferenceClient(model))
|
15 |
+
|
16 |
+
|
17 |
+
# def format_prompt(message, history):
|
18 |
+
# prompt = ""
|
19 |
+
# if history:
|
20 |
+
# for user_prompt, bot_response in history:
|
21 |
+
# prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
|
22 |
+
# prompt += f"<start_of_turn>model{bot_response}"
|
23 |
+
# prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model"
|
24 |
+
# return prompt
|
25 |
+
|
26 |
+
|
27 |
+
# def chat_inf(system_prompt, prompt, history, client_choice, seed, temp, tokens, top_p, rep_p):
|
28 |
+
# client = clients[int(client_choice) - 1]
|
29 |
+
# if not history:
|
30 |
+
# history = []
|
31 |
+
# hist_len = 0
|
32 |
+
# if history:
|
33 |
+
# hist_len = len(history)
|
34 |
+
# print(hist_len)
|
35 |
+
|
36 |
+
# generate_kwargs = dict(
|
37 |
+
# temperature=temp,
|
38 |
+
# max_new_tokens=tokens,
|
39 |
+
# top_p=top_p,
|
40 |
+
# repetition_penalty=rep_p,
|
41 |
+
# do_sample=True,
|
42 |
+
# seed=seed,
|
43 |
+
# )
|
44 |
+
# formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
|
45 |
+
# stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
|
46 |
+
# return_full_text=False)
|
47 |
+
# output = ""
|
48 |
+
|
49 |
+
# for response in stream:
|
50 |
+
# output += response.token.text
|
51 |
+
# yield [(prompt, output)]
|
52 |
+
# history.append((prompt, output))
|
53 |
+
# yield history
|
54 |
+
|
55 |
+
|
56 |
+
# def clear_fn():
|
57 |
+
# return None
|
58 |
+
|
59 |
+
|
60 |
+
# rand_val = random.randint(1, 1111111111111111)
|
61 |
+
|
62 |
+
|
63 |
+
# def check_rand(inp, val):
|
64 |
+
# if inp is True:
|
65 |
+
# return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
|
66 |
+
# else:
|
67 |
+
# return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
|
68 |
+
|
69 |
+
|
70 |
+
# with gr.Blocks() as app:
|
71 |
+
# gr.HTML(
|
72 |
+
# """<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1></center>""")
|
73 |
+
# with gr.Group():
|
74 |
+
# with gr.Row():
|
75 |
+
# client_choice = gr.Dropdown(label="Models", type='index', choices=[c for c in models], value=models[0],
|
76 |
+
# interactive=True)
|
77 |
+
# chat_b = gr.Chatbot(height=500)
|
78 |
+
# with gr.Group():
|
79 |
+
# with gr.Row():
|
80 |
+
# with gr.Column(scale=1):
|
81 |
+
# with gr.Group():
|
82 |
+
# rand = gr.Checkbox(label="Random Seed", value=True)
|
83 |
+
# seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
|
84 |
+
# tokens = gr.Slider(label="Max new tokens", value=6400, minimum=0, maximum=8000, step=64,
|
85 |
+
# interactive=True, visible=True, info="The maximum number of tokens")
|
86 |
+
# with gr.Column(scale=1):
|
87 |
+
# with gr.Group():
|
88 |
+
# temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
89 |
+
# top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
|
90 |
+
# rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
|
91 |
+
|
92 |
+
# with gr.Group():
|
93 |
+
# with gr.Row():
|
94 |
+
# with gr.Column(scale=3):
|
95 |
+
# sys_inp = gr.Textbox(label="System Prompt (optional)")
|
96 |
+
# inp = gr.Textbox(label="Prompt")
|
97 |
+
# with gr.Row():
|
98 |
+
# btn = gr.Button("Chat")
|
99 |
+
# stop_btn = gr.Button("Stop")
|
100 |
+
# clear_btn = gr.Button("Clear")
|
101 |
+
|
102 |
+
# chat_sub = inp.submit(check_rand, [rand, seed], seed).then(chat_inf,
|
103 |
+
# [sys_inp, inp, chat_b, client_choice, seed, temp, tokens,
|
104 |
+
# top_p, rep_p], chat_b)
|
105 |
+
# go = btn.click(check_rand, [rand, seed], seed).then(chat_inf,
|
106 |
+
# [sys_inp, inp, chat_b, client_choice, seed, temp, tokens, top_p,
|
107 |
+
# rep_p], chat_b)
|
108 |
+
# stop_btn.click(None, None, None, cancels=[go, chat_sub])
|
109 |
+
# clear_btn.click(clear_fn, None, [chat_b])
|
110 |
+
# app.queue(default_concurrency_limit=10).launch()
|
111 |
+
|
112 |
import gradio as gr
|
113 |
+
import pandas as pd
|
114 |
+
import spacy
|
115 |
+
import re
|
116 |
+
import time
|
117 |
+
import plotly.express as px
|
118 |
+
|
119 |
+
# Load spaCy model
|
120 |
+
nlp = spacy.load("en_core_web_sm")
|
121 |
+
|
122 |
+
class JobPosting:
|
123 |
+
def __init__(self, description):
|
124 |
+
self.description = description
|
125 |
+
|
126 |
+
def extract(self):
|
127 |
+
text = nlp(self.description)
|
128 |
+
|
129 |
+
# Extract key nouns as qualifications
|
130 |
+
qualifications = [token.text for token in text if token.pos_ == "NOUN"]
|
131 |
+
|
132 |
+
# Extract salary using regex
|
133 |
+
salary_regex = r"\$\d{1,3}K"
|
134 |
+
salary = re.findall(salary_regex, self.description)
|
135 |
+
|
136 |
+
# Extract pre-trained ORG entities as companies
|
137 |
+
orgs = [ent.text for ent in text.ents if ent.label_ == "ORG"]
|
138 |
+
|
139 |
+
# Define responsibilities extraction logic (replace with actual logic)
|
140 |
+
responsibilities = "Define responsibilities here"
|
141 |
+
|
142 |
+
return qualifications, salary, responsibilities
|
143 |
+
|
144 |
+
def main(description):
|
145 |
+
job = JobPosting(description)
|
146 |
+
qualifications, salary, responsibilities = job.extract()
|
147 |
+
return f"Qualifications: {qualifications}\nSalary: {salary}\nResponsibilities: {responsibilities}"
|
148 |
+
|
149 |
+
iface = gr.Interface(fn=main,
|
150 |
+
inputs="text",
|
151 |
+
outputs="text",
|
152 |
+
title="Job Posting Extractor",
|
153 |
+
description="Enter a job description to extract qualifications, salary, and responsibilities.")
|
154 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|