Spaces:
Runtime error
Runtime error
clean up
Browse files- pyproject.toml +0 -1
- tagger/common.py +4 -32
pyproject.toml
CHANGED
@@ -76,7 +76,6 @@ docstring-code-format = true
|
|
76 |
[tool.ruff.lint.isort]
|
77 |
combine-as-imports = true
|
78 |
force-wrap-aliases = true
|
79 |
-
known-local-folder = ["pi-tagger"]
|
80 |
known-first-party = ["pi-tagger"]
|
81 |
|
82 |
|
|
|
76 |
[tool.ruff.lint.isort]
|
77 |
combine-as-imports = true
|
78 |
force-wrap-aliases = true
|
|
|
79 |
known-first-party = ["pi-tagger"]
|
80 |
|
81 |
|
tagger/common.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
import
|
2 |
-
from dataclasses import asdict, dataclass
|
3 |
from functools import lru_cache
|
4 |
-
from os import PathLike
|
5 |
from pathlib import Path
|
6 |
-
from typing import
|
7 |
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
@@ -12,16 +10,8 @@ from huggingface_hub.utils import HfHubHTTPError
|
|
12 |
from PIL import Image
|
13 |
|
14 |
|
15 |
-
class DictJsonMixin:
|
16 |
-
def asdict(self, *args, **kwargs) -> dict[str, Any]:
|
17 |
-
return asdict(self, *args, **kwargs)
|
18 |
-
|
19 |
-
def asjson(self, *args, **kwargs):
|
20 |
-
return json.dumps(asdict(self, *args, **kwargs))
|
21 |
-
|
22 |
-
|
23 |
@dataclass
|
24 |
-
class LabelData
|
25 |
names: list[str]
|
26 |
rating: list[np.int64]
|
27 |
general: list[np.int64]
|
@@ -29,7 +19,7 @@ class LabelData(DictJsonMixin):
|
|
29 |
|
30 |
|
31 |
@dataclass
|
32 |
-
class ImageLabels
|
33 |
caption: str
|
34 |
booru: str
|
35 |
rating: dict[str, float]
|
@@ -37,24 +27,6 @@ class ImageLabels(DictJsonMixin):
|
|
37 |
character: dict[str, float]
|
38 |
|
39 |
|
40 |
-
@lru_cache(maxsize=5)
|
41 |
-
def load_labels(version: str = "v3", data_dir: PathLike = "./data") -> LabelData:
|
42 |
-
data_dir = Path(data_dir).resolve()
|
43 |
-
csv_path = data_dir.joinpath(f"selected_tags_{version}.csv")
|
44 |
-
if not csv_path.is_file():
|
45 |
-
raise FileNotFoundError(f"{csv_path.name} not found in {data_dir}")
|
46 |
-
|
47 |
-
df: pd.DataFrame = pd.read_csv(csv_path, usecols=["name", "category"])
|
48 |
-
tag_data = LabelData(
|
49 |
-
names=df["name"].tolist(),
|
50 |
-
rating=list(np.where(df["category"] == 9)[0]),
|
51 |
-
general=list(np.where(df["category"] == 0)[0]),
|
52 |
-
character=list(np.where(df["category"] == 4)[0]),
|
53 |
-
)
|
54 |
-
|
55 |
-
return tag_data
|
56 |
-
|
57 |
-
|
58 |
@lru_cache(maxsize=5)
|
59 |
def load_labels_hf(
|
60 |
repo_id: str,
|
|
|
1 |
+
from dataclasses import dataclass
|
|
|
2 |
from functools import lru_cache
|
|
|
3 |
from pathlib import Path
|
4 |
+
from typing import Optional
|
5 |
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
|
|
10 |
from PIL import Image
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
@dataclass
|
14 |
+
class LabelData:
|
15 |
names: list[str]
|
16 |
rating: list[np.int64]
|
17 |
general: list[np.int64]
|
|
|
19 |
|
20 |
|
21 |
@dataclass
|
22 |
+
class ImageLabels:
|
23 |
caption: str
|
24 |
booru: str
|
25 |
rating: dict[str, float]
|
|
|
27 |
character: dict[str, float]
|
28 |
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
@lru_cache(maxsize=5)
|
31 |
def load_labels_hf(
|
32 |
repo_id: str,
|