atom-detection / visualizations /pred_map_to_table.py
Romain Graux
Initial commit with ml code and webapp
b2ffc9b
import os
from hashlib import sha1
import numpy as np
import pandas as pd
from atoms_detection.dl_detection import DLDetection
from atoms_detection.dataset import CoordinatesDataset
from utils.constants import Split, ModelArgs
from utils.paths import PT_DATASET, PREDS_PATH, DETECTION_PATH, PRED_MAP_TABLE_LOGS
threshold = 0.89
extension_name = "replicate"
detections_path = os.path.join(DETECTION_PATH, f"dl_detection_{extension_name}_{threshold}")
inference_cache_path = os.path.join(PREDS_PATH, os.path.basename(detections_path))
def get_pred_map(img_filename: str) -> np.ndarray:
img_hash = sha1(img_filename.encode()).hexdigest()
prediciton_cache = os.path.join(inference_cache_path, f"{img_hash}.npy")
if not os.path.exists(prediciton_cache):
detection = DLDetection(
model_name=ModelArgs.BASICCNN,
ckpt_filename="/home/fpares/PycharmProjects/stem_atoms/models/basic_replicate.ckpt",
dataset_csv="/home/fpares/PycharmProjects/stem_atoms/dataset/Coordinate_image_pairs.csv",
threshold=threshold,
detections_path=detections_path
)
img = DLDetection.open_image(image_path)
pred_map = detection.image_to_pred_map(img)
np.save(prediciton_cache, pred_map)
else:
pred_map = np.load(prediciton_cache)
return pred_map
if not os.path.exists(PRED_MAP_TABLE_LOGS):
os.makedirs(PRED_MAP_TABLE_LOGS)
coordinates_dataset = CoordinatesDataset(PT_DATASET)
for image_path, coordinates_path in coordinates_dataset.iterate_data(Split.TEST):
pred_map = get_pred_map(image_path)
pred_table = {'X': [], 'Y': [], 'Z': []}
for index, likelihood in np.ndenumerate(pred_map):
pred_table['X'].append(index[0])
pred_table['Y'].append(index[1])
pred_table['Z'].append(likelihood)
pred_df = pd.DataFrame(pred_table)
img_name = os.path.splitext(os.path.basename(image_path))[0]
pred_table_output_path = os.path.join(PRED_MAP_TABLE_LOGS, f"{img_name}_likelihood_{extension_name}_{threshold}.csv")
pred_df.to_csv(pred_table_output_path, index=False)