Spaces:
Sleeping
Sleeping
# @title Load functions for working with image coordinates and labels | |
# @title Load utility functions for data loading and preprocessing | |
from typing import Tuple, Union | |
import torch | |
import warnings | |
warnings.filterwarnings("ignore", module="torchvision.datasets") | |
def to_onehot(idx: torch.Tensor, n: int) -> torch.Tensor: | |
""" | |
One-hot encoding of a label | |
""" | |
if torch.max(idx).item() >= n: | |
raise AssertionError( | |
"Labelling must start from 0 and " | |
"maximum label value must be less than total number of classes") | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
if idx.dim() == 1: | |
idx = idx.unsqueeze(1) | |
onehot = torch.zeros(idx.size(0), n, device=device) | |
return onehot.scatter_(1, idx.to(device), 1) | |
def grid2xy(X1: torch.Tensor, X2: torch.Tensor) -> torch.Tensor: | |
X = torch.cat((X1[None], X2[None]), 0) | |
d0, d1 = X.shape[0], X.shape[1] * X.shape[2] | |
X = X.reshape(d0, d1).T | |
return X | |
def imcoordgrid(im_dim: Tuple) -> torch.Tensor: | |
xx = torch.linspace(-1, 1, im_dim[0]) | |
yy = torch.linspace(1, -1, im_dim[1]) | |
x0, x1 = torch.meshgrid(xx, yy) | |
return grid2xy(x0, x1) | |
def transform_coordinates(coord: torch.Tensor, | |
phi: Union[torch.Tensor, float] = 0, | |
coord_dx: Union[torch.Tensor, float] = 0, | |
) -> torch.Tensor: | |
if torch.sum(phi) == 0: | |
phi = coord.new_zeros(coord.shape[0]) | |
rotmat_r1 = torch.stack([torch.cos(phi), torch.sin(phi)], 1) | |
rotmat_r2 = torch.stack([-torch.sin(phi), torch.cos(phi)], 1) | |
rotmat = torch.stack([rotmat_r1, rotmat_r2], axis=1) | |
coord = torch.bmm(coord, rotmat) | |
return coord + coord_dx | |