Spaces:
Running
Running
wzkariampuzha
commited on
Commit
·
d5406d4
1
Parent(s):
31ca6c1
Update classify_abs.py
Browse files- classify_abs.py +100 -0
classify_abs.py
CHANGED
@@ -277,6 +277,106 @@ def search_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:int
|
|
277 |
|
278 |
return pmid_abs
|
279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
# Generate predictions for a PubMed Id
|
281 |
# nlp: en_core_web_lg
|
282 |
# nlpSci: en_ner_bc5cdr_md
|
|
|
277 |
|
278 |
return pmid_abs
|
279 |
|
280 |
+
def streamlist_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:int, filtering:str) -> Dict[str,str]:
|
281 |
+
#set of all pmids
|
282 |
+
pmids = set()
|
283 |
+
|
284 |
+
#dictionary {pmid:abstract}
|
285 |
+
pmid_abs = {}
|
286 |
+
|
287 |
+
#type validation, allows string or list input
|
288 |
+
if type(searchterm_list)!=list:
|
289 |
+
if type(searchterm_list)==str:
|
290 |
+
searchterm_list = [searchterm_list]
|
291 |
+
else:
|
292 |
+
searchterm_list = list(searchterm_list)
|
293 |
+
|
294 |
+
my_bar = st.progress(0)
|
295 |
+
percent_by_step = 100/maxResults
|
296 |
+
|
297 |
+
#gathers pmids into a set first
|
298 |
+
for dz in searchterm_list:
|
299 |
+
term = ''
|
300 |
+
dz_words = dz.split()
|
301 |
+
for word in dz_words:
|
302 |
+
term += word + '%20'
|
303 |
+
query = term[:-3]
|
304 |
+
|
305 |
+
## get pmid results from searching for disease name through PubMed API
|
306 |
+
url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query
|
307 |
+
r = requests.get(url)
|
308 |
+
root = ET.fromstring(r.content)
|
309 |
+
|
310 |
+
# loop over resulting articles
|
311 |
+
for result in root.iter('IdList'):
|
312 |
+
if len(pmids) >= maxResults:
|
313 |
+
break
|
314 |
+
pmidlist = [pmid.text for pmid in result.iter('Id')]
|
315 |
+
pmids.update(pmidlist)
|
316 |
+
|
317 |
+
## get results from searching for disease name through EBI API
|
318 |
+
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core'
|
319 |
+
r = requests.get(url)
|
320 |
+
root = ET.fromstring(r.content)
|
321 |
+
|
322 |
+
# loop over resulting articles
|
323 |
+
for result in root.iter('result'):
|
324 |
+
if len(pmids) >= maxResults:
|
325 |
+
break
|
326 |
+
pmidlist = [pmid.text for pmid in result.iter('id')]
|
327 |
+
#can also gather abstract and title here but for some reason did not work as intended the first time. Optimize in future versions to reduce latency.
|
328 |
+
if len(pmidlist) > 0:
|
329 |
+
pmid = pmidlist[0]
|
330 |
+
if pmid[0].isdigit():
|
331 |
+
pmids.add(pmid)
|
332 |
+
|
333 |
+
#Construct sets for filtering (right before adding abstract to pmid_abs
|
334 |
+
# The purpose of this is to do a second check of the abstracts, filters out any abstracts unrelated to the search terms
|
335 |
+
#if filtering is 'lenient' or default
|
336 |
+
if filtering !='none' or filtering !='strict':
|
337 |
+
filter_terms = set(searchterm_list).union(set(str(re.sub(',','',' '.join(searchterm_list))).split()).difference(STOPWORDS))
|
338 |
+
'''
|
339 |
+
# The above is equivalent to this but uses less memory and may be faster:
|
340 |
+
#create a single string of the terms within the searchterm_list
|
341 |
+
joined = ' '.join(searchterm_list)
|
342 |
+
#remove commas
|
343 |
+
comma_gone = re.sub(',','',joined)
|
344 |
+
#split the string into list of words and convert list into a Pythonic set
|
345 |
+
split = set(comma_gone.split())
|
346 |
+
#remove the STOPWORDS from the set of key words
|
347 |
+
key_words = split.difference(STOPWORDS)
|
348 |
+
#create a new set of the list members in searchterm_list
|
349 |
+
search_set = set(searchterm_list)
|
350 |
+
#join the two sets
|
351 |
+
terms = search_set.union(key_words)
|
352 |
+
#if any word(s) in the abstract intersect with any of these terms then the abstract is good to go.
|
353 |
+
'''
|
354 |
+
|
355 |
+
## get abstracts from EBI PMID API and output a dictionary
|
356 |
+
for pmid in pmids:
|
357 |
+
abstract = PMID_getAb(pmid)
|
358 |
+
if len(abstract)>5:
|
359 |
+
#do filtering here
|
360 |
+
if filtering == 'strict':
|
361 |
+
uncased_ab = abstract.lower()
|
362 |
+
for term in searchterm_list:
|
363 |
+
if term.lower() in uncased_ab:
|
364 |
+
pmid_abs[pmid] = abstract
|
365 |
+
break
|
366 |
+
elif filtering =='none':
|
367 |
+
pmid_abs[pmid] = abstract
|
368 |
+
|
369 |
+
#Default filtering is 'lenient'.
|
370 |
+
else:
|
371 |
+
#Else and if are separated for readability and to better understand logical flow.
|
372 |
+
if set(filter_terms).intersection(set(word_tokenize(abstract))):
|
373 |
+
pmid_abs[pmid] = abstract
|
374 |
+
|
375 |
+
|
376 |
+
print('Found',len(pmids),'PMIDs. Gathered',len(pmid_abs),'Relevant Abstracts.')
|
377 |
+
|
378 |
+
return pmid_abs
|
379 |
+
|
380 |
# Generate predictions for a PubMed Id
|
381 |
# nlp: en_core_web_lg
|
382 |
# nlpSci: en_ner_bc5cdr_md
|