Spaces:
Sleeping
Sleeping
from typing import Union | |
import nltk | |
nltk.data.path.extend(["/home/user/app/nltk_data","./nltk_data"]) | |
from epi_pipeline import ( | |
search_getAbs, | |
API_search_extraction, | |
NER_Pipeline, | |
GARD_Search, | |
Classify_Pipeline, | |
) | |
from fastapi import FastAPI, Path, Query | |
from enum import Enum | |
import json | |
#These pipelines need to be loaded | |
rd_identify = GARD_Search() | |
epi_classify = Classify_Pipeline() | |
epi_extract = NER_Pipeline() | |
#Load the app | |
app = FastAPI() | |
#Create Filtering Class | |
## Need to predefine types of filtering that we will accept | |
## See here: https://fastapi.tiangolo.com/tutorial/path-params/#predefined-values | |
class FilteringType(str, Enum): | |
none = 'none' | |
lenient = 'lenient' | |
strict = 'strict' | |
async def root(): | |
return {"message": "Epidemiology Information Extraction Pipeline for Rare Diseases. Built by the National Center for Advancing Translational Sciences"} | |
# Uses optional arguments from here: https://fastapi.tiangolo.com/tutorial/query-params/ | |
# Example query: | |
## rdip2.ncats.io:8000/get_RD_Abs/term=GARD:0000001?max_results=100&filtering=none | |
## Where '?' separates the required and optional inputs | |
## and '&' separates the optional inputs from each other | |
async def get_RD_Abs(search_term:Union[str, int] = Path(title="The name of the rare disease or the GARD ID you want epidemiology data for."), | |
max_results:int = Query(default = 50, title="Maximum Number of Abstracts Returned", gt=0, lt=1000), | |
filtering:FilteringType = Query(default = 'strict', title="Type of Abstract Filtering. Can be 'strict', 'lenient', 'none'.")): | |
searchterm_list = rd_identify.autosearch(search_term) | |
if filtering == FilteringType.none: | |
filtering = 'none' | |
elif filtering == FilteringType.lenient: | |
filtering = 'lenient' | |
if filtering == FilteringType.strict: | |
filtering = 'strict' | |
else: | |
print(filtering) | |
raise ValueError("Filtering must be either 'strict','lenient', or 'none'.") | |
return json.dumps(search_getAbs(searchterm_list, max_results, filtering)) | |
async def epi_extract_rare_disease(search_term:Union[str, int] = Path(title="The name of the rare disease or the GARD ID you want to gather abstracts from PubMed."), | |
max_results:int = Query(default = 50, title="Maximum Number of Abstracts Returned", gt=0, lt=1000), | |
filtering:str = Query(default = 'strict', title="Type of Abstract Filtering. Can be 'strict', 'lenient', 'none'."), #for abstract search | |
extract_diseases:bool = Query(default = False, title="Extract Rare Diseases from Text Using GARD Dictionary.")): #for disease extraction | |
return API_search_extraction( | |
search_term, max_results, filtering, | |
epi_extract, rd_identify, extract_diseases, epi_classify) | |
async def epi_extract_text(text:str = Path(title="Abstract text that you want to extract"), | |
extract_diseases:bool = Query(default = False, title="Extract Rare Diseases from Text Using GARD Dictionary.")): #for disease extraction | |
return API_text_extraction(text, #Text to be extracted | |
epi_ner, #for biobert extraction | |
GARD_Search, extract_diseases, #for disease extraction | |
) | |
#Batch Abstracts | |
# Example query: | |
## rdip2.ncats.io:8000/get_RD_Abs_batch/term=GARD:0000001;Cystic%20Fibrosis;Serpiginous%20choroidopathy?filtering=strict | |
async def get_RD_Abs_batch(rd_list:str = Path(title="The names of the rare disease or the GARD ID you want abstracts for, separated by semicolons."), | |
max_results:int = Query(default = 50, title="Maximum Number of Abstracts Returned Per Rare Diseas", gt=0, lt=1000), | |
filtering:str = Query(default = 'strict', title="Type of Abstract Filtering. Can be 'strict', 'lenient', 'none'.")): | |
rd_list = rd_list.split(';') | |
output = [] | |
for rd in rd_list: | |
searchterm_list = rd_identify.autosearch(rd) | |
studies = json.loads(search_getAbs(searchterm_list, max_results, filtering)) | |
output.append({"Disease": rd, "Studies": studies}) | |
return output | |
#return json.dumps(output) | |
#Batch Epi Extraction | |
async def epi_extract_RD_batch(search_term:Union[str, int] = Path(title="The names of the rare disease or the GARD ID you want epidemiology data for, separated by semicolons."), | |
max_results:int = Query(default = 50, title="Maximum Number of Abstracts Returned", gt=0, lt=1000), | |
filtering:str = Query(default = 'strict', title="Type of Abstract Filtering. Can be 'strict', 'lenient', 'none'."), #for abstract search | |
extract_diseases:bool = Query(default = False, title="Extract Rare Diseases from Text Using GARD Dictionary.")): #for disease extraction | |
rd_list = rd_list.split(';') | |
output = [] | |
for rd in rd_list: | |
extraction = json.loads(API_search_extraction( | |
rd, max_results, filtering, | |
epi_extract, rd_identify, extract_diseases, epi_classify)) | |
output.append({"Disease": rd, "Extraction": extraction}) | |
return output | |
#return json.dumps(output) | |