nazneen commited on
Commit
2443328
0 Parent(s):
Files changed (4) hide show
  1. LICENSE +201 -0
  2. README.md +43 -0
  3. app.py +403 -0
  4. requirements.txt +139 -0
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Systematic Error Analysis and Labeling
3
+ emoji: 🦭
4
+ colorFrom: yellow
5
+ colorTo: pink
6
+ sdk: streamlit
7
+ sdk_version: 1.10.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ ---
12
+ # SEAL
13
+ Systematic Error Analysis and Labeling (SEAL) is an interactive tool for discovering systematic errors in NLP models via clustering on high-loss example groups and semantic labeling for interpretability of those error-groups. It supports fine-grained analytical visualization for interactively zooming into potential systematic bugs and features for crafting prompts to label those bugs semantically.
14
+
15
+ 🎥 [Demo screencast](https://vimeo.com/736659216)
16
+
17
+ <p>
18
+ <img src="./assets/website/seal.gif" alt="Demo gif"/>
19
+ </p>
20
+
21
+ ## Table of Contents
22
+ - [Installation](#installation)
23
+ - [Quickstart](#quickstart)
24
+ - [Running Locally](#running-locally)
25
+ - [Citation](#citation)
26
+
27
+ ## Installation
28
+ Please use python>=3.8 since some dependencies require that for installation.
29
+ ```shell
30
+ git clone https://huggingface.co/spaces/nazneen/seal
31
+ cd seal
32
+ pip install --upgrade pip
33
+ pip install -r requirements.txt
34
+ ```
35
+
36
+ ## Quickstart
37
+ ```
38
+ streamlit run app.py
39
+ ```
40
+
41
+ ## Running Locally
42
+
43
+ ## Citation
app.py ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## LIBRARIES ###
2
+ ## Data
3
+ import numpy as np
4
+ from numpy.core.numeric import outer
5
+ import pandas as pd
6
+ import torch
7
+ import pickle
8
+ from tqdm import tqdm
9
+ from math import floor
10
+ from collections import defaultdict
11
+ from transformers import AutoTokenizer
12
+ #pd.set_option('precision', 2)
13
+ #pd.options.display.float_format = '${:,.2f}'.format
14
+
15
+ # Analysis
16
+ # from gensim.models.doc2vec import Doc2Vec
17
+ # from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
18
+ import nltk
19
+ from nltk.cluster import KMeansClusterer
20
+ import scipy.spatial.distance as sdist
21
+ from scipy.spatial import distance_matrix
22
+ # nltk.download('punkt') #make sure that punkt is downloaded
23
+
24
+ # App & Visualization
25
+ import streamlit as st
26
+ import altair as alt
27
+ import plotly.graph_objects as go
28
+ from streamlit_vega_lite import altair_component
29
+
30
+
31
+ # utils
32
+ from random import sample
33
+ from seal import utils as ut
34
+
35
+
36
+ def down_samp(embedding):
37
+ """Down sample a data frame for altiar visualization """
38
+ # total number of positive and negative sentiments in the class
39
+ #embedding = embedding.groupby('slice').apply(lambda x: x.sample(frac=0.3))
40
+ total_size = embedding.groupby(['slice', 'label'], as_index=False).count()
41
+
42
+ user_data = 0
43
+ # if 'Your Sentences' in str(total_size['slice']):
44
+ # tmp = embedding.groupby(['slice'], as_index=False).count()
45
+ # val = int(tmp[tmp['slice'] == "Your Sentences"]['source'])
46
+ # user_data = val
47
+
48
+ max_sample = total_size.groupby('slice').max()['content']
49
+
50
+ # # down sample to meeting altair's max values
51
+ # # but keep the proportional representation of groups
52
+ down_samp = 1/(sum(max_sample.astype(float))/(1000-user_data))
53
+
54
+ max_samp = max_sample.apply(lambda x: floor(
55
+ x*down_samp)).astype(int).to_dict()
56
+ max_samp['Your Sentences'] = user_data
57
+
58
+ # # sample down for each group in the data frame
59
+ embedding = embedding.groupby('slice').apply(
60
+ lambda x: x.sample(n=max_samp.get(x.name))).reset_index(drop=True)
61
+
62
+ # # order the embedding
63
+ return(embedding)
64
+
65
+ #down sample low loss points only so misclassified examples are not down sampled in viz
66
+
67
+
68
+ def down_samp_ll(embedding):
69
+ df_ll = embedding[embedding['slice'] == 'low-loss']
70
+ #if(len(df_ll)<5000):
71
+ # return embedding
72
+ #else:
73
+ df_hl = embedding[embedding['slice'] == 'high-loss']
74
+ down_samp = len(df_ll) - (1000-len(df_hl))
75
+ df_ll.sample(n=down_samp)
76
+ embedding.drop(df_ll.index)
77
+ return embedding
78
+
79
+
80
+ def data_comparison(df):
81
+ selection = alt.selection_multi(fields=['cluster', 'label'])
82
+ color = alt.condition(alt.datum.slice == 'high-loss', alt.Color('cluster:N', scale=alt.Scale(
83
+ domain=df.cluster.unique().tolist()), legend=None), alt.value("lightgray"))
84
+ opacity = alt.condition(selection, alt.value(0.7), alt.value(0.25))
85
+
86
+ # basic chart
87
+ scatter = alt.Chart(df).mark_point(size=100, filled=True).encode(
88
+ x=alt.X('x:Q', axis=None),
89
+ y=alt.Y('y:Q', axis=None),
90
+ color=color,
91
+ shape=alt.Shape('label:N', scale=alt.Scale(
92
+ range=['circle', 'diamond'])),
93
+ tooltip=['cluster:N', 'slice:N', 'content:N', 'label:N', 'pred:N'],
94
+ opacity=opacity
95
+ ).properties(
96
+ width=1000,
97
+ height=800
98
+ ).interactive()
99
+
100
+ legend = alt.Chart(df).mark_point(size=100, filled=True).encode(
101
+ x=alt.X("label:N"),
102
+ y=alt.Y('cluster:N', axis=alt.Axis(
103
+ orient='right'), sort='ascending', title=''),
104
+ shape=alt.Shape('label:N', scale=alt.Scale(
105
+ range=['circle', 'diamond']), legend=None),
106
+ color=color,
107
+ ).add_selection(
108
+ selection
109
+ )
110
+ layered = scatter | legend
111
+ layered = layered.configure_axis(
112
+ grid=False
113
+ ).configure_view(
114
+ strokeOpacity=0
115
+ )
116
+
117
+ content = legend.encode(text='content:N')
118
+
119
+ return layered
120
+
121
+
122
+ def viz_panel(embedding_df):
123
+ """ Visualization Panel Layout"""
124
+ all_metrics = {}
125
+ st.warning("**Error group visualization**")
126
+ with st.expander("How to read this chart:"):
127
+ st.markdown("* Each **point** is an input example.")
128
+ st.markdown("* Gray points have low-loss and the colored have high-loss. High-loss instances are clustered using **kmeans** and each color represents a cluster.")
129
+ st.markdown(
130
+ "* The **shape** of each point reflects the label category -- positive (diamond) or negative sentiment (circle).")
131
+ #st.altair_chart(data_comparison(down_samp(embedding_df)), use_container_width=True)
132
+ viz = data_comparison(embedding_df)
133
+ st.altair_chart(viz, use_container_width=True)
134
+
135
+ @st.cache()
136
+ def frequent_tokens(data, tokenizer, loss_quantile=0.95, top_k=200, smoothing=0.005):
137
+ unique_tokens = []
138
+ tokens = []
139
+ for row in tqdm(data['content']):
140
+ tokenized = tokenizer(row, padding=True, truncation=True, return_tensors='pt')
141
+ tokens.append(tokenized['input_ids'].flatten())
142
+ unique_tokens.append(torch.unique(tokenized['input_ids']))
143
+ losses = data['loss'].astype(float)
144
+ high_loss = losses.quantile(loss_quantile)
145
+ loss_weights = np.where(losses > high_loss,losses,0.0)
146
+ loss_weights = loss_weights / loss_weights.sum()
147
+
148
+ token_frequencies = defaultdict(float)
149
+ token_frequencies_error = defaultdict(float)
150
+ weights_uniform = np.full_like(loss_weights, 1 / len(loss_weights))
151
+
152
+ for i in tqdm(range(len(data))):
153
+ for token in unique_tokens[i]:
154
+ token_frequencies[token.item()] += weights_uniform[i]
155
+ token_frequencies_error[token.item()] += loss_weights[i]
156
+
157
+ token_lrs = {k: (smoothing+token_frequencies_error[k]) / (
158
+ smoothing+token_frequencies[k]) for k in token_frequencies}
159
+ tokens_sorted = list(map(lambda x: x[0], sorted(
160
+ token_lrs.items(), key=lambda x: x[1])[::-1]))
161
+
162
+ top_tokens = []
163
+ for i, (token) in enumerate(tokens_sorted[:top_k]):
164
+ top_tokens.append(['%10s' % (tokenizer.decode(token)), '%.4f' % (token_frequencies[token]), '%.4f' % (
165
+ token_frequencies_error[token]), '%4.2f' % (token_lrs[token])])
166
+ return pd.DataFrame(top_tokens, columns=['token', 'freq', 'error-freq', 'ratio'])
167
+
168
+
169
+ def load_precached_groups(data_ll, df_list, num_clusters, group_dict_path, group_idx_path, num_points=1000):
170
+ merged = dynamic_groups(df_list, num_clusters)
171
+ down_samp = len(data_ll) - (num_points-len(merged))
172
+ sample_idx = data_ll.sample(n=down_samp)
173
+ data_ll = data_ll.drop(sample_idx.index)
174
+ # put all the low loss data in one bigger cluster
175
+ data_ll['cluster'] = merged.loc[merged['cluster'].idxmax()].cluster + 1
176
+ merged = pd.concat([merged, data_ll])
177
+ # merged['cluster'] = merged['cluster'].astype('str')
178
+ # with open(group_dict_path, 'rb') as f:
179
+ # group_dict = pickle.load(f)
180
+ # with open(group_idx_path, 'rb') as f:
181
+ # group_idx_dict = pickle.load(f)
182
+ # for k,v in group_idx_dict.items():
183
+ # label = group_dict.get(k)
184
+ # merged.loc[merged.index.isin(v), ['cluster']] = label
185
+ return merged
186
+
187
+
188
+ def dynamic_groups(df_list, num_clusters):
189
+ merged = pd.DataFrame()
190
+ ind = 0
191
+ for df in df_list:
192
+ kmeans_df, assigned_clusters = kmeans(df, num_clusters=num_clusters)
193
+ kmeans_df['cluster'] = kmeans_df['cluster'] + ind*num_clusters
194
+ ind = ind+1
195
+ merged = pd.concat([merged, kmeans_df])
196
+ return merged
197
+
198
+
199
+ @st.cache(ttl=600)
200
+ def get_data(inference, emb):
201
+ preds = inference.outputs.numpy()
202
+ losses = inference.losses.numpy()
203
+ embeddings = pd.DataFrame(emb, columns=['x', 'y'])
204
+ num_examples = len(losses)
205
+ # dataset_labels = [dataset[i]['label'] for i in range(num_examples)]
206
+ return pd.concat([pd.DataFrame(np.transpose(np.vstack([dataset[:num_examples]['content'],
207
+ dataset[:num_examples]['label'], preds, losses])), columns=['content', 'label', 'pred', 'loss']), embeddings], axis=1)
208
+
209
+
210
+ def kmeans(data, num_clusters=3):
211
+ X = np.array(data['embedding'].to_list())
212
+ kclusterer = KMeansClusterer(
213
+ num_clusters, distance=nltk.cluster.util.cosine_distance,
214
+ repeats=25, avoid_empty_clusters=True)
215
+ assigned_clusters = kclusterer.cluster(X, assign_clusters=True)
216
+ data['cluster'] = pd.Series(
217
+ assigned_clusters, index=data.index).astype('int')
218
+ data['centroid'] = data['cluster'].apply(lambda x: kclusterer.means()[x])
219
+ return data, assigned_clusters
220
+
221
+
222
+ def distance_from_centroid(row):
223
+ return sdist.norm(row['embedding'] - row['centroid'].tolist())
224
+
225
+
226
+ @st.cache(ttl=600)
227
+ def craft_prompt(cluster_df):
228
+ instruction = "In this task, we'll assign a short and precise label to a cluster of documents based on the topics or concepts most relevant to these documents. The documents are all subsets of a sentiment classification dataset.\n"
229
+ if len(cluster_df) > 10:
230
+ content = cluster_df['content'].str[:600].tolist()
231
+ else:
232
+ content = cluster_df['content'].str[:1000].tolist()
233
+ examples = '\n - '.join(content)
234
+ text = instruction + '- ' + examples + '\n Cluster label:'
235
+ return text.strip()
236
+
237
+
238
+ @st.cache(ttl=600)
239
+ def topic_distribution(weights, smoothing=0.01):
240
+ topic_frequencies = defaultdict(float)
241
+ topic_frequencies_error = defaultdict(float)
242
+ weights_uniform = np.full_like(weights, 1 / len(weights))
243
+ num_examples = len(weights)
244
+ for i in range(num_examples):
245
+ example = dataset[i]
246
+ category = example['title']
247
+ topic_frequencies[category] += weights_uniform[i]
248
+ topic_frequencies_error[category] += weights[i]
249
+
250
+ topic_ratios = {c: (smoothing + topic_frequencies_error[c]) / (
251
+ smoothing + topic_frequencies[c]) for c in topic_frequencies}
252
+
253
+ categories_sorted = map(lambda x: x[0], sorted(
254
+ topic_ratios.items(), key=lambda x: x[1], reverse=True))
255
+
256
+ topic_distr = []
257
+ for category in categories_sorted:
258
+ topic_distr.append(['%.3f' % topic_frequencies[category], '%.3f' %
259
+ topic_frequencies_error[category], '%.2f' % topic_ratios[category], '%s' % category])
260
+
261
+ return pd.DataFrame(topic_distr, columns=['Overall frequency', 'Error frequency', 'Ratio', 'Category'])
262
+
263
+
264
+ def populate_session(dataset, model):
265
+ data_df = read_file_to_df(
266
+ './assets/data/'+dataset + '_' + model+'.parquet')
267
+ if model == 'albert-base-v2-yelp-polarity':
268
+ tokenizer = AutoTokenizer.from_pretrained('textattack/'+model)
269
+ else:
270
+ tokenizer = AutoTokenizer.from_pretrained(model)
271
+ # if "user_data" not in st.session_state:
272
+ # st.session_state["user_data"] = data_df
273
+ # if "selected_slice" not in st.session_state:
274
+ # st.session_state["selected_slice"] = None
275
+ return tokenizer
276
+
277
+
278
+ @st.cache(allow_output_mutation=True)
279
+ def read_file_to_df(file):
280
+ return pd.read_parquet(file)
281
+
282
+
283
+ if __name__ == "__main__":
284
+ ### STREAMLIT APP CONGFIG ###
285
+ st.set_page_config(layout="wide", page_title="Interactive Error Analysis")
286
+
287
+ ut.init_style()
288
+
289
+ lcol, rcol = st.columns([5, 2])
290
+ # ******* loading the mode and the data
291
+ #st.sidebar.mardown("<h4>Interactive Error Analysis</h4>", unsafe_allow_html=True)
292
+
293
+ dataset = st.sidebar.selectbox(
294
+ "Dataset",
295
+ ["amazon_polarity", "yelp_polarity", "imdb"],
296
+ index=1
297
+ )
298
+
299
+ model = st.sidebar.selectbox(
300
+ "Model",
301
+ ["distilbert-base-uncased-finetuned-sst-2-english",
302
+ "albert-base-v2-yelp-polarity", "distilbert-imdb"],
303
+ )
304
+
305
+ ### LOAD DATA AND TOKENIZER VARIABLES ###
306
+ ##uncomment the next next line to run dynamically and not from file
307
+ #tokenizer = populate_session(dataset, model)
308
+ if dataset == 'imdb':
309
+ data_df = read_file_to_df('./assets/data/imdb_distilbert.parquet')
310
+ else:
311
+ data_df = read_file_to_df(
312
+ './assets/data/'+dataset + '_' + model+'.parquet')
313
+ data_df = data_df[:20000]
314
+
315
+ loss_quantile = st.sidebar.slider(
316
+ "Loss Quantile", min_value=0.9, max_value=1.0, step=0.01, value=0.98
317
+ )
318
+
319
+ data_df['loss'] = data_df['loss'].astype(float)
320
+ data_df['pred'] = data_df['pred'].astype(int)
321
+ losses = data_df['loss']
322
+ high_loss = losses.quantile(loss_quantile)
323
+ data_df['slice'] = np.where(data_df['loss'] >= high_loss, 'high-loss', 'low-loss')
324
+ # drop rows that are not hl
325
+ data_hl = pd.DataFrame(data_df[data_df['slice'] == 'high-loss'])
326
+ #data_hl = data_hl.drop(data_hl[data_hl.pred==data_hl.label].index)
327
+ data_ll = pd.DataFrame(data_df[data_df['slice'] == 'low-loss'])
328
+ # this is to allow clustering over each error type. fp, fn for binary classification
329
+ df_list = [d for _, d in data_hl.groupby(['label'])]
330
+
331
+ run_kmeans = st.sidebar.radio(
332
+ "Cluster error group?", ('True', 'False'), index=0)
333
+
334
+ num_clusters = st.sidebar.slider(
335
+ "# clusters", min_value=1, max_value=60, step=1, value=3)
336
+
337
+ num_points = st.sidebar.slider(
338
+ "# data points to visualize", min_value=1000, max_value=5000, step=100, value=1000)
339
+
340
+ selected_cluster = st.sidebar.number_input(
341
+ label='Cluster #:', max_value=num_clusters-1, min_value=0)
342
+
343
+ if run_kmeans == 'True':
344
+ with st.spinner(text='running kmeans...'):
345
+ group_dict_path = './assets/data/cluster-labels/'+dataset+'.pkl'
346
+ group_idx_path = './assets/data/cluster-labels/'+dataset+'_idx.pkl'
347
+ #data_hl_path = './assets/data/high-loss/'+dataset+'.parquet'
348
+ merged = load_precached_groups(data_ll, df_list, int(
349
+ (num_clusters/2)), group_dict_path, group_idx_path, num_points=num_points)
350
+ #dynamic_groups(df_list,)
351
+ #tmp = pd.concat([data_ll, merged], axis =0, ignore_index=True)
352
+
353
+ cluster_content = craft_prompt(
354
+ merged.loc[merged['cluster'] == selected_cluster])
355
+
356
+ with lcol:
357
+ st.markdown('<h5>Error Groups</h5>', unsafe_allow_html=True)
358
+ with st.expander("How to read this table:"):
359
+ st.markdown(
360
+ "* *Error groups* refers to the subset of evaluation dataset the model performs poorly on.")
361
+ st.markdown(
362
+ "* The table displays model error groups on the evaluation dataset, sorted by loss.")
363
+ st.markdown(
364
+ "* Each row is an input example that includes the label, model pred, loss, and error group.")
365
+ with st.spinner(text='loading error groups...'):
366
+ #dataframe=read_file_to_df('./assets/data/'+dataset+ '_'+ model+'_error-slices.parquet')
367
+ #uncomment the next next line to run dynamically and not from file
368
+ dataframe = merged[['content', 'label', 'pred', 'loss', 'cluster']].sort_values(
369
+ by=['loss'], ascending=False)
370
+ #table_html = dataframe.to_html(columns=['content', 'label', 'pred', 'loss', 'cluster'], max_rows=50)
371
+ #table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
372
+ st.write(dataframe.style.format(
373
+ {'loss': '{:.2f}'}), width=1000, height=300)
374
+
375
+ with rcol:
376
+ with st.spinner(text='loading...'):
377
+ st.markdown('<h5>Word Distribution in Error Groups</h5>',
378
+ unsafe_allow_html=True)
379
+ #uncomment the next two lines to run dynamically and not from file
380
+ # if model == 'albert-base-v2-yelp-polarity':
381
+ # tokenizer = AutoTokenizer.from_pretrained('textattack/'+model)
382
+ # else:
383
+ # tokenizer = AutoTokenizer.from_pretrained(model)
384
+ # commontokens = frequent_tokens(data_df, tokenizer, loss_quantile=loss_quantile)
385
+ if dataset == 'imdb':
386
+ commontokens = read_file_to_df('./assets/data/imdb_distilbert_commontokens.parquet')
387
+ else:
388
+ commontokens = read_file_to_df(
389
+ './assets/data/'+dataset + '_' + model+'_commontokens.parquet')
390
+ with st.expander("How to read this table:"):
391
+ st.markdown(
392
+ "* The table displays the most frequent tokens in error groups, relative to their frequencies in the val set.")
393
+
394
+ st.write(commontokens)
395
+
396
+ with st.spinner(text='loading visualization...'):
397
+ viz_panel(merged)
398
+
399
+ st.sidebar.download_button(
400
+ data=cluster_content,
401
+ label="Build prompt from data",
402
+ file_name='prompt'
403
+ )
requirements.txt ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file may be used to create an environment using:
2
+ # $ conda create --name <env> --file <this file>
3
+ # platform: osx-arm64
4
+ absl-py==1.0.0; python_version >= '3.6'
5
+ aiohttp==3.8.0
6
+ aiosignal==1.2.0; python_version >= '3.6'
7
+ altair==4.1.0
8
+ antlr4-python3-runtime==4.8
9
+ appnope==0.1.2; sys_platform == 'darwin' and platform_system == 'Darwin'
10
+ argon2-cffi==21.1.0; python_version >= '3.5'
11
+ astor==0.8.1; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
12
+ async-timeout==4.0.1; python_version >= '3.6'
13
+ attrs==21.2.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
14
+ backcall==0.2.0
15
+ backports.zoneinfo==0.2.1; python_version >= '3.6' and python_version < '3.9'
16
+ base58==2.1.1; python_version >= '3.5'
17
+ bleach==4.1.0; python_version >= '3.6'
18
+ blinker==1.4
19
+ cachetools==4.2.4; python_version ~= '3.5'
20
+ certifi==2021.10.8
21
+ cffi==1.15.0
22
+ charset-normalizer==2.0.7; python_version >= '3'
23
+ click==7.1.2; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
24
+ cython==0.29.24; python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'
25
+ cytoolz==0.11.2; python_version >= '3.5'
26
+ dataclasses==0.6
27
+ datasets==1.15.1
28
+ debugpy==1.5.1; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
29
+ decorator==5.1.0; python_version >= '3.5'
30
+ defusedxml==0.7.1; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
31
+ dill==0.3.4; python_version >= '2.7' and python_version != '3.0'
32
+ entrypoints==0.3; python_version >= '2.7'
33
+ fastbpe==0.1.0
34
+ filelock==3.3.2; python_version >= '3.6'
35
+ frozenlist==1.2.0; python_version >= '3.6'
36
+ fsspec[http]==2021.11.0; python_version >= '3.6'
37
+ future==0.18.2; python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'
38
+ fuzzywuzzy==0.18.0
39
+ gitdb==4.0.9; python_version >= '3.6'
40
+ gitpython==3.1.24; python_version >= '3.7'
41
+ google-auth-oauthlib==0.4.6; python_version >= '3.6'
42
+ google-auth==2.3.3; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4, 3.5'
43
+ grpcio==1.41.1
44
+ idna==3.3; python_version >= '3'
45
+ importlib-resources==5.4.0; python_version < '3.9'
46
+ kaleido==0.2.1
47
+ markdown==3.3.4; python_version >= '3.6'
48
+ markupsafe==2.0.1; python_version >= '3.6'
49
+ matplotlib-inline==0.1.3; python_version >= '3.5'
50
+ meerkat-ml==0.1.2; python_version >= '3.7'
51
+ mistune==0.8.4
52
+ multidict==5.2.0; python_version >= '3.6'
53
+ multiprocess==0.70.12.2
54
+ nbclient==0.5.8; python_full_version >= '3.6.1'
55
+ nbconvert==6.3.0; python_version >= '3.7'
56
+ nbformat==5.1.3; python_version >= '3.5'
57
+ nest-asyncio==1.5.1; python_version >= '3.5'
58
+ nltk==3.6.5
59
+ notebook==6.4.5; python_version >= '3.6'
60
+ numpy==1.21.4
61
+ oauthlib==3.1.1; python_version >= '3.6'
62
+ omegaconf==2.1.1; python_version >= '3.6'
63
+ packaging==21.2; python_version >= '3.6'
64
+ pandas==1.3.4
65
+ pandocfilters==1.5.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
66
+ parso==0.8.2; python_version >= '3.6'
67
+ pexpect==4.8.0; sys_platform != 'win32'
68
+ pickleshare==0.7.5
69
+ pillow==8.4.0; python_version >= '3.6'
70
+ plotly==5.3.1
71
+ progressbar==2.5
72
+ prometheus-client==0.12.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
73
+ prompt-toolkit==3.0.22; python_full_version >= '3.6.2'
74
+ protobuf==3.19.1; python_version >= '3.5'
75
+ ptyprocess==0.7.0; os_name != 'nt'
76
+ pyahocorasick==1.4.2
77
+ pyarrow==6.0.0; python_version >= '3.6'
78
+ pyasn1-modules==0.2.8
79
+ pyasn1==0.4.8
80
+ pycparser==2.21; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
81
+ pydeck==0.7.1; python_version >= '3.7'
82
+ pydeprecate==0.3.1; python_version >= '3.6'
83
+ pygments==2.10.0; python_version >= '3.5'
84
+ pympler==0.9
85
+ pyparsing==2.4.7; python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'
86
+ pyrsistent==0.18.0; python_version >= '3.6'
87
+ python-dateutil==2.8.2; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
88
+ python-levenshtein==0.12.2
89
+ pytorch-lightning==1.5.1; python_version >= '3.6'
90
+ pytz-deprecation-shim==0.1.0.post0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4, 3.5'
91
+ pytz==2021.3
92
+ pyyaml==6.0; python_version >= '3.6'
93
+ pyzmq==22.3.0; python_version >= '3.6'
94
+ regex==2021.11.10
95
+ requests-oauthlib==1.3.0
96
+ requests==2.26.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4, 3.5'
97
+ robustnessgym==0.1.3
98
+ rsa==4.7.2; python_version >= '3.6'
99
+ sacremoses==0.0.46
100
+ scikit-learn==1.0.1; python_version >= '3.7'
101
+ scipy==1.7.2; python_version < '3.11' and python_version >= '3.7'
102
+ semver==2.13.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
103
+ send2trash==1.8.0
104
+ six==1.16.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
105
+ sklearn==0.0
106
+ smart-open==5.2.1; python_version >= '3.6' and python_version < '4'
107
+ smmap==5.0.0; python_version >= '3.6'
108
+ streamlit-vega-lite==0.1.0
109
+ streamlit==1.2.0
110
+ tenacity==8.0.1; python_version >= '3.6'
111
+ tensorboard-data-server==0.6.1; python_version >= '3.6'
112
+ tensorboard-plugin-wit==1.8.0
113
+ tensorboard==2.7.0; python_version >= '3.6'
114
+ terminado==0.12.1; python_version >= '3.6'
115
+ testpath==0.5.0; python_version >= '3.5'
116
+ threadpoolctl==3.0.0; python_version >= '3.6'
117
+ tokenizers==0.10.3
118
+ toml==0.10.2; python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'
119
+ toolz==0.11.2; python_version >= '3.5'
120
+ torch==1.10.0; python_full_version >= '3.6.2'
121
+ torchmetrics==0.6.0; python_version >= '3.6'
122
+ tornado==6.1; python_version >= '3.5'
123
+ tqdm==4.62.3; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'
124
+ traitlets==5.1.1; python_version >= '3.7'
125
+ transformers==4.12.3; python_version >= '3.6'
126
+ typing-extensions==3.10.0.2; python_version < '3.10'
127
+ tzdata==2021.5; python_version >= '3.6'
128
+ tzlocal==4.1; python_version >= '3.6'
129
+ ujson==4.2.0; python_version >= '3.6'
130
+ urllib3==1.26.7; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4' and python_version < '4'
131
+ validators==0.18.2; python_version >= '3.4'
132
+ wcwidth==0.2.5
133
+ webencodings==0.5.1
134
+ werkzeug==2.0.2; python_version >= '3.6'
135
+ wheel==0.37.0; python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'
136
+ widgetsnbextension==3.5.2
137
+ xxhash==2.0.2; python_version >= '2.6' and python_version not in '3.0, 3.1, 3.2, 3.3'
138
+ yarl==1.7.2; python_version >= '3.6'
139
+ zipp==3.6.0; python_version < '3.10'