Update app.py
Browse files
app.py
CHANGED
|
@@ -2,54 +2,53 @@ import gradio as gr
|
|
| 2 |
from datasets import load_dataset
|
| 3 |
from qdrant_client import QdrantClient, models
|
| 4 |
from sentence_transformers import SentenceTransformer
|
|
|
|
| 5 |
|
| 6 |
# --- Configuration ---
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
COLLECTION_NAME = "my_text_collection"
|
| 10 |
MODEL_NAME = 'sentence-transformers/all-MiniLM-L6-v2'
|
| 11 |
|
| 12 |
-
# --- Load
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# Limiting the dataset for a quicker demo
|
| 17 |
-
data = data[:1000]
|
| 18 |
-
|
| 19 |
-
# Load a pre-trained sentence transformer model
|
| 20 |
-
model = SentenceTransformer(MODEL_NAME)
|
| 21 |
|
| 22 |
# --- Qdrant Client and Collection Setup ---
|
| 23 |
-
# Initialize Qdrant client
|
| 24 |
-
#
|
| 25 |
-
qdrant_client = QdrantClient(
|
| 26 |
|
| 27 |
-
#
|
| 28 |
try:
|
| 29 |
-
qdrant_client.get_collection(collection_name=COLLECTION_NAME)
|
| 30 |
print("Collection already exists.")
|
| 31 |
except Exception as e:
|
| 32 |
-
print("
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
collection_name=COLLECTION_NAME,
|
| 35 |
vectors_config=models.VectorParams(size=model.get_sentence_embedding_dimension(), distance=models.Distance.COSINE),
|
| 36 |
)
|
| 37 |
|
| 38 |
# --- Generate and Index Embeddings ---
|
| 39 |
print("Generating and indexing embeddings...")
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
points=models.Batch(
|
| 48 |
-
ids=list(range(i, i + len(batch_texts))),
|
| 49 |
-
vectors=[embedding.tolist() for embedding in embeddings],
|
| 50 |
-
payloads=[{"text": text} for text in batch_texts]
|
| 51 |
-
)
|
| 52 |
-
)
|
| 53 |
print("Embeddings indexed successfully.")
|
| 54 |
|
| 55 |
|
|
@@ -61,18 +60,22 @@ def search_in_qdrant(query):
|
|
| 61 |
if not query:
|
| 62 |
return "Please enter a search query."
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
search_result = qdrant_client.search(
|
| 67 |
collection_name=COLLECTION_NAME,
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
)
|
| 71 |
|
| 72 |
results_text = ""
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
| 74 |
results_text += f"**Score:** {hit.score:.4f}\n"
|
| 75 |
-
results_text += f"**Text:** {hit.payload['
|
| 76 |
|
| 77 |
return results_text
|
| 78 |
|
|
@@ -82,7 +85,7 @@ with gr.Blocks() as demo:
|
|
| 82 |
gr.Markdown("Enter a query to search for similar news articles from the AG News dataset.")
|
| 83 |
|
| 84 |
with gr.Row():
|
| 85 |
-
search_input = gr.Textbox(label="Search Query")
|
| 86 |
|
| 87 |
search_button = gr.Button("Search")
|
| 88 |
search_output = gr.Markdown()
|
|
|
|
| 2 |
from datasets import load_dataset
|
| 3 |
from qdrant_client import QdrantClient, models
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
+
import torch # Ensure torch is imported
|
| 6 |
|
| 7 |
# --- Configuration ---
|
| 8 |
+
# Use ":memory:" for a temporary, in-memory database.
|
| 9 |
+
# Or use a path like "./qdrant_db" to save the data to disk.
|
| 10 |
+
# Using a path is better for Spaces as data will be rebuilt only when the code changes.
|
| 11 |
+
QDRANT_PATH = "./qdrant_db"
|
| 12 |
COLLECTION_NAME = "my_text_collection"
|
| 13 |
MODEL_NAME = 'sentence-transformers/all-MiniLM-L6-v2'
|
| 14 |
|
| 15 |
+
# --- Load Model ---
|
| 16 |
+
# Specify that the model should run on the CPU, which is standard for HF Spaces
|
| 17 |
+
device = "cpu"
|
| 18 |
+
model = SentenceTransformer(MODEL_NAME, device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# --- Qdrant Client and Collection Setup ---
|
| 21 |
+
# Initialize Qdrant client to use a local, on-disk storage
|
| 22 |
+
# This avoids the need to run a separate Qdrant server
|
| 23 |
+
qdrant_client = QdrantClient(path=QDRANT_PATH)
|
| 24 |
|
| 25 |
+
# Check if the collection already exists
|
| 26 |
try:
|
| 27 |
+
collection_info = qdrant_client.get_collection(collection_name=COLLECTION_NAME)
|
| 28 |
print("Collection already exists.")
|
| 29 |
except Exception as e:
|
| 30 |
+
print("Collection not found, creating a new one...")
|
| 31 |
+
# --- Load Dataset ---
|
| 32 |
+
# We only load the dataset and create embeddings if the collection doesn't exist
|
| 33 |
+
dataset = load_dataset("ag_news", split="test")
|
| 34 |
+
# Limiting the dataset for a quicker demo setup
|
| 35 |
+
data = [item['text'] for item in dataset][:1000]
|
| 36 |
+
|
| 37 |
+
# Create the collection
|
| 38 |
+
qdrant_client.create_collection(
|
| 39 |
collection_name=COLLECTION_NAME,
|
| 40 |
vectors_config=models.VectorParams(size=model.get_sentence_embedding_dimension(), distance=models.Distance.COSINE),
|
| 41 |
)
|
| 42 |
|
| 43 |
# --- Generate and Index Embeddings ---
|
| 44 |
print("Generating and indexing embeddings...")
|
| 45 |
+
# This can take a moment on the first run
|
| 46 |
+
qdrant_client.add(
|
| 47 |
+
collection_name=COLLECTION_NAME,
|
| 48 |
+
documents=data,
|
| 49 |
+
ids=list(range(len(data))), # Simple sequential IDs
|
| 50 |
+
embedding_model=model
|
| 51 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
print("Embeddings indexed successfully.")
|
| 53 |
|
| 54 |
|
|
|
|
| 60 |
if not query:
|
| 61 |
return "Please enter a search query."
|
| 62 |
|
| 63 |
+
# The client's search function can now take the model directly
|
| 64 |
+
hits = qdrant_client.search(
|
|
|
|
| 65 |
collection_name=COLLECTION_NAME,
|
| 66 |
+
query_text=query,
|
| 67 |
+
query_filter=None, # No filters for now
|
| 68 |
+
limit=5, # Return the top 5 most similar results
|
| 69 |
+
embedding_model=model
|
| 70 |
)
|
| 71 |
|
| 72 |
results_text = ""
|
| 73 |
+
if not hits:
|
| 74 |
+
return "No results found."
|
| 75 |
+
|
| 76 |
+
for hit in hits:
|
| 77 |
results_text += f"**Score:** {hit.score:.4f}\n"
|
| 78 |
+
results_text += f"**Text:** {hit.payload['document']}\n\n" # Payload key is 'document' when using .add()
|
| 79 |
|
| 80 |
return results_text
|
| 81 |
|
|
|
|
| 85 |
gr.Markdown("Enter a query to search for similar news articles from the AG News dataset.")
|
| 86 |
|
| 87 |
with gr.Row():
|
| 88 |
+
search_input = gr.Textbox(label="Search Query", placeholder="e.g., 'Latest news on space exploration'")
|
| 89 |
|
| 90 |
search_button = gr.Button("Search")
|
| 91 |
search_output = gr.Markdown()
|