navidved commited on
Commit
d30410b
·
verified ·
1 Parent(s): 86a4ded

Upload 6 files

Browse files
Files changed (6) hide show
  1. README.md +8 -6
  2. app.py +148 -0
  3. constants.py +115 -0
  4. init.py +129 -0
  5. requirements.txt +61 -0
  6. utils_display.py +39 -0
README.md CHANGED
@@ -1,12 +1,14 @@
1
  ---
2
- title: Open Persian Asr Leaderboard
3
- emoji: 📈
4
- colorFrom: pink
5
- colorTo: green
6
  sdk: gradio
7
- sdk_version: 4.44.1
8
  app_file: app.py
9
- pinned: false
 
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Open ASR Leaderboard
3
+ emoji: 🏆
4
+ colorFrom: red
5
+ colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 4.41.0
8
  app_file: app.py
9
+ pinned: true
10
+ tags:
11
+ - leaderboard
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import json
4
+ from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS
5
+ from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
6
+ from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
7
+ from datetime import datetime, timezone
8
+
9
+ LAST_UPDATED = "OCT 2nd 2024"
10
+
11
+ column_names = {
12
+ "MODEL": "Model",
13
+ "Avg. WER": "Average WER ⬇️",
14
+ "Avg. RTFx": "RTFx ⬆️️",
15
+ "AMI WER": "AMI",
16
+ "Earnings22 WER": "Earnings22",
17
+ "Gigaspeech WER": "Gigaspeech",
18
+ "LS Clean WER": "LS Clean",
19
+ "LS Other WER": "LS Other",
20
+ "SPGISpeech WER": "SPGISpeech",
21
+ "Tedlium WER": "Tedlium",
22
+ "Voxpopuli WER": "Voxpopuli",
23
+ }
24
+
25
+ eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub()
26
+
27
+ if not csv_results.exists():
28
+ raise Exception(f"CSV file {csv_results} does not exist locally")
29
+
30
+ # Get csv with data and parse columns
31
+ original_df = pd.read_csv(csv_results)
32
+
33
+ # Formats the columns
34
+ def formatter(x):
35
+ if type(x) is str:
36
+ x = x
37
+ else:
38
+ x = round(x, 2)
39
+ return x
40
+
41
+ for col in original_df.columns:
42
+ if col == "model":
43
+ original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
44
+ else:
45
+ original_df[col] = original_df[col].apply(formatter) # For numerical values
46
+
47
+ original_df.rename(columns=column_names, inplace=True)
48
+ original_df.sort_values(by='Average WER ⬇️', inplace=True)
49
+
50
+ COLS = [c.name for c in fields(AutoEvalColumn)]
51
+ TYPES = [c.type for c in fields(AutoEvalColumn)]
52
+
53
+
54
+ def request_model(model_text, chbcoco2017):
55
+
56
+ # Determine the selected checkboxes
57
+ dataset_selection = []
58
+ if chbcoco2017:
59
+ dataset_selection.append("ESB Datasets tests only")
60
+
61
+ if len(dataset_selection) == 0:
62
+ return styled_error("You need to select at least one dataset")
63
+
64
+ base_model_on_hub, error_msg = is_model_on_hub(model_text)
65
+
66
+ if not base_model_on_hub:
67
+ return styled_error(f"Base model '{model_text}' {error_msg}")
68
+
69
+ # Construct the output dictionary
70
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
71
+ required_datasets = ', '.join(dataset_selection)
72
+ eval_entry = {
73
+ "date": current_time,
74
+ "model": model_text,
75
+ "datasets_selected": required_datasets
76
+ }
77
+
78
+ # Prepare file path
79
+ DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)
80
+
81
+ fn_datasets = '@ '.join(dataset_selection)
82
+ filename = model_text.replace("/","@") + "@@" + fn_datasets
83
+ if filename in requested_models:
84
+ return styled_error(f"A request for this model '{model_text}' and dataset(s) was already made.")
85
+ try:
86
+ filename_ext = filename + ".txt"
87
+ out_filepath = DIR_OUTPUT_REQUESTS / filename_ext
88
+
89
+ # Write the results to a text file
90
+ with open(out_filepath, "w") as f:
91
+ f.write(json.dumps(eval_entry))
92
+
93
+ upload_file(filename, out_filepath)
94
+
95
+ # Include file in the list of uploaded files
96
+ requested_models.append(filename)
97
+
98
+ # Remove the local file
99
+ out_filepath.unlink()
100
+
101
+ return styled_message("🤗 Your request has been submitted and will be evaluated soon!</p>")
102
+ except Exception as e:
103
+ return styled_error(f"Error submitting request!")
104
+
105
+ with gr.Blocks() as demo:
106
+ gr.HTML(BANNER, elem_id="banner")
107
+ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
108
+
109
+ with gr.Tabs(elem_classes="tab-buttons") as tabs:
110
+ with gr.TabItem("🏅 Leaderboard", elem_id="od-benchmark-tab-table", id=0):
111
+ leaderboard_table = gr.components.Dataframe(
112
+ value=original_df,
113
+ datatype=TYPES,
114
+ elem_id="leaderboard-table",
115
+ interactive=False,
116
+ visible=True,
117
+ )
118
+
119
+ with gr.TabItem("📈 Metrics", elem_id="od-benchmark-tab-table", id=1):
120
+ gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")
121
+
122
+ with gr.TabItem("✉️✨ Request a model here!", elem_id="od-benchmark-tab-table", id=2):
123
+ with gr.Column():
124
+ gr.Markdown("# ✉️✨ Request results for a new model here!", elem_classes="markdown-text")
125
+ with gr.Column():
126
+ gr.Markdown("Select a dataset:", elem_classes="markdown-text")
127
+ with gr.Column():
128
+ model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
129
+ chb_coco2017 = gr.Checkbox(label="COCO validation 2017 dataset", visible=False, value=True, interactive=False)
130
+ with gr.Column():
131
+ mdw_submission_result = gr.Markdown()
132
+ btn_submitt = gr.Button(value="🚀 Request")
133
+ btn_submitt.click(request_model,
134
+ [model_name_textbox, chb_coco2017],
135
+ mdw_submission_result)
136
+
137
+ gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
138
+
139
+ with gr.Row():
140
+ with gr.Accordion("📙 Citation", open=False):
141
+ gr.Textbox(
142
+ value=CITATION_TEXT, lines=7,
143
+ label="Copy the BibTeX snippet to cite this source",
144
+ elem_id="citation-button",
145
+ show_copy_button=True,
146
+ )
147
+
148
+ demo.launch()
constants.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ # Directory where request by models are stored
4
+ DIR_OUTPUT_REQUESTS = Path("requested_models")
5
+ EVAL_REQUESTS_PATH = Path("eval_requests")
6
+
7
+ ##########################
8
+ # Text definitions #
9
+ ##########################
10
+
11
+ banner_url = "https://huggingface.co/datasets/reach-vb/random-images/resolve/main/asr_leaderboard.png"
12
+ BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>'
13
+
14
+ TITLE = "<html> <head> <style> h1 {text-align: center;} </style> </head> <body> <h1> 🤗 Open Automatic Speech Recognition Leaderboard </b> </body> </html>"
15
+
16
+ INTRODUCTION_TEXT = "📐 The 🤗 Open ASR Leaderboard ranks and evaluates speech recognition models \
17
+ on the Hugging Face Hub. \
18
+ \nWe report the Average [WER](https://huggingface.co/spaces/evaluate-metric/wer) (⬇️ lower the better) and [RTFx](https://github.com/NVIDIA/DeepLearningExamples/blob/master/Kaldi/SpeechRecognition/README.md#metrics) (⬆️ higher the better). Models are ranked based on their Average WER, from lowest to highest. Check the 📈 Metrics tab to understand how the models are evaluated. \
19
+ \nIf you want results for a model that is not listed here, you can submit a request for it to be included ✉️✨. \
20
+ \nThe leaderboard currently focuses on English speech recognition, and will be expanded to multilingual evaluation in later versions."
21
+
22
+ CITATION_TEXT = """@misc{open-asr-leaderboard,
23
+ title = {Open Automatic Speech Recognition Leaderboard},
24
+ author = {Srivastav, Vaibhav and Majumdar, Somshubra and Koluguri, Nithin and Moumen, Adel and Gandhi, Sanchit and others},
25
+ year = 2023,
26
+ publisher = {Hugging Face},
27
+ howpublished = "\\url{https://huggingface.co/spaces/hf-audio/open_asr_leaderboard}"
28
+ }
29
+ """
30
+
31
+ METRICS_TAB_TEXT = """
32
+ Here you will find details about the speech recognition metrics and datasets reported in our leaderboard.
33
+
34
+ ## Metrics
35
+
36
+ Models are evaluated jointly using the Word Error Rate (WER) and Inverse Real Time Factor (RTFx) metrics. The WER metric
37
+ is used to assess the accuracy of a system, and the RTFx the inference speed. Models are ranked in the leaderboard based
38
+ on their WER, lowest to highest.
39
+
40
+ Crucially, the WER and RTFx values are computed for the same inference run using a single script. The implication of this is two-fold:
41
+ 1. The WER and RTFx values are coupled: for a given WER, one can expect to achieve the corresponding RTFx. This allows the proposer to trade-off lower WER for higher RTFx should they wish.
42
+ 2. The WER and RTFx values are averaged over all audios in the benchmark (in the order of thousands of audios).
43
+
44
+ For details on reproducing the benchmark numbers, refer to the [Open ASR GitHub repository](https://github.com/huggingface/open_asr_leaderboard#evaluate-a-model).
45
+
46
+ ### Word Error Rate (WER)
47
+
48
+ Word Error Rate is used to measure the **accuracy** of automatic speech recognition systems. It calculates the percentage
49
+ of words in the system's output that differ from the reference (correct) transcript. **A lower WER value indicates higher accuracy**.
50
+
51
+ Take the following example:
52
+
53
+ | Reference: | the | cat | sat | on | the | mat |
54
+ |-------------|-----|-----|---------|-----|-----|-----|
55
+ | Prediction: | the | cat | **sit** | on | the | | |
56
+ | Label: | ✅ | ✅ | S | ✅ | ✅ | D |
57
+
58
+ Here, we have:
59
+ * 1 substitution ("sit" instead of "sat")
60
+ * 0 insertions
61
+ * 1 deletion ("mat" is missing)
62
+
63
+ This gives 2 errors in total. To get our word error rate, we divide the total number of errors (substitutions + insertions + deletions) by the total number of words in our
64
+ reference (N), which for this example is 6:
65
+
66
+ ```
67
+ WER = (S + I + D) / N = (1 + 0 + 1) / 6 = 0.333
68
+ ```
69
+
70
+ Giving a WER of 0.33, or 33%. For a fair comparison, we calculate **zero-shot** (i.e. pre-trained models only) *normalised WER* for all the model checkpoints, meaning punctuation and casing is removed from the references and predictions. You can find the evaluation code on our [Github repository](https://github.com/huggingface/open_asr_leaderboard). To read more about how the WER is computed, refer to the [Audio Transformers Course](https://huggingface.co/learn/audio-course/chapter5/evaluation).
71
+
72
+ ### Inverse Real Time Factor (RTFx)
73
+
74
+ Inverse Real Time Factor is a measure of the **latency** of automatic speech recognition systems, i.e. how long it takes an
75
+ model to process a given amount of speech. It is defined as:
76
+ ```
77
+ RTFx = (number of seconds of audio inferred) / (compute time in seconds)
78
+ ```
79
+
80
+ Therefore, and RTFx of 1 means a system processes speech as fast as it's spoken, while an RTFx of 2 means it takes half the time.
81
+ Thus, **a higher RTFx value indicates lower latency**.
82
+
83
+ ## How to reproduce our results
84
+
85
+ The ASR Leaderboard will be a continued effort to benchmark open source/access speech recognition models where possible.
86
+ Along with the Leaderboard we're open-sourcing the codebase used for running these evaluations.
87
+ For more details head over to our repo at: https://github.com/huggingface/open_asr_leaderboard
88
+
89
+ P.S. We'd love to know which other models you'd like us to benchmark next. Contributions are more than welcome! ♥️
90
+
91
+ ## Benchmark datasets
92
+
93
+ Evaluating Speech Recognition systems is a hard problem. We use the multi-dataset benchmarking strategy proposed in the
94
+ [ESB paper](https://arxiv.org/abs/2210.13352) to obtain robust evaluation scores for each model.
95
+
96
+ ESB is a benchmark for evaluating the performance of a single automatic speech recognition (ASR) system across a broad
97
+ set of speech datasets. It comprises eight English speech recognition datasets, capturing a broad range of domains,
98
+ acoustic conditions, speaker styles, and transcription requirements. As such, it gives a better indication of how
99
+ a model is likely to perform on downstream ASR compared to evaluating it on one dataset alone.
100
+
101
+ The ESB score is calculated as a macro-average of the WER scores across the ESB datasets. The models in the leaderboard
102
+ are ranked based on their average WER scores, from lowest to highest.
103
+
104
+ | Dataset | Domain | Speaking Style | Train (h) | Dev (h) | Test (h) | Transcriptions | License |
105
+ |-----------------------------------------------------------------------------------------|-----------------------------|-----------------------|-----------|---------|----------|--------------------|-----------------|
106
+ | [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) | Audiobook | Narrated | 960 | 11 | 11 | Normalised | CC-BY-4.0 |
107
+ | [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | European Parliament | Oratory | 523 | 5 | 5 | Punctuated | CC0 |
108
+ | [TED-LIUM](https://huggingface.co/datasets/LIUM/tedlium) | TED talks | Oratory | 454 | 2 | 3 | Normalised | CC-BY-NC-ND 3.0 |
109
+ | [GigaSpeech](https://huggingface.co/datasets/speechcolab/gigaspeech) | Audiobook, podcast, YouTube | Narrated, spontaneous | 2500 | 12 | 40 | Punctuated | apache-2.0 |
110
+ | [SPGISpeech](https://huggingface.co/datasets/kensho/spgispeech) | Financial meetings | Oratory, spontaneous | 4900 | 100 | 100 | Punctuated & Cased | User Agreement |
111
+ | [Earnings-22](https://huggingface.co/datasets/revdotcom/earnings22) | Financial meetings | Oratory, spontaneous | 105 | 5 | 5 | Punctuated & Cased | CC-BY-SA-4.0 |
112
+ | [AMI](https://huggingface.co/datasets/edinburghcstr/ami) | Meetings | Spontaneous | 78 | 9 | 9 | Punctuated & Cased | CC-BY-4.0 |
113
+
114
+ For more details on the individual datasets and how models are evaluated to give the ESB score, refer to the [ESB paper](https://arxiv.org/abs/2210.13352).
115
+ """
init.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from constants import EVAL_REQUESTS_PATH
3
+ from pathlib import Path
4
+ from huggingface_hub import HfApi, Repository
5
+
6
+ TOKEN_HUB = os.environ.get("TOKEN_HUB", None)
7
+ QUEUE_REPO = os.environ.get("QUEUE_REPO", None)
8
+ QUEUE_PATH = os.environ.get("QUEUE_PATH", None)
9
+
10
+ hf_api = HfApi(
11
+ endpoint="https://huggingface.co",
12
+ token=TOKEN_HUB,
13
+ )
14
+
15
+ # Language code for Persian
16
+ PERSIAN_LANGUAGE_CODE = "fa"
17
+
18
+ def load_all_info_from_dataset_hub():
19
+ eval_queue_repo = None
20
+ requested_models = None
21
+
22
+ passed = True
23
+ if TOKEN_HUB is None:
24
+ passed = False
25
+ else:
26
+ print("Pulling evaluation requests and results.")
27
+
28
+ eval_queue_repo = Repository(
29
+ local_dir=QUEUE_PATH,
30
+ clone_from=QUEUE_REPO,
31
+ use_auth_token=TOKEN_HUB,
32
+ repo_type="dataset",
33
+ )
34
+ eval_queue_repo.git_pull()
35
+
36
+ # Local directory where dataset repo is cloned + folder with eval requests
37
+ directory = QUEUE_PATH / EVAL_REQUESTS_PATH
38
+ requested_models = get_all_requested_models(directory)
39
+ requested_models = [p.stem for p in requested_models]
40
+
41
+ # Filter models to only include those supporting Persian language
42
+ requested_models = filter_persian_models(requested_models)
43
+
44
+ # Local directory where dataset repo is cloned
45
+ csv_results = get_csv_with_results(QUEUE_PATH)
46
+ if csv_results is None:
47
+ passed = False
48
+ if not passed:
49
+ raise ValueError("No Hugging Face token provided. Skipping evaluation requests and results.")
50
+
51
+ return eval_queue_repo, requested_models, csv_results
52
+
53
+
54
+ def upload_file(requested_model_name, path_or_fileobj):
55
+ dest_repo_file = Path(EVAL_REQUESTS_PATH) / path_or_fileobj.name
56
+ dest_repo_file = str(dest_repo_file)
57
+ hf_api.upload_file(
58
+ path_or_fileobj=path_or_fileobj,
59
+ path_in_repo=str(dest_repo_file),
60
+ repo_id=QUEUE_REPO,
61
+ token=TOKEN_HUB,
62
+ repo_type="dataset",
63
+ commit_message=f"Add {requested_model_name} to eval queue")
64
+
65
+
66
+ def get_all_requested_models(directory):
67
+ directory = Path(directory)
68
+ all_requested_models = list(directory.glob("*.txt"))
69
+ return all_requested_models
70
+
71
+
72
+ def get_csv_with_results(directory):
73
+ directory = Path(directory)
74
+ all_csv_files = list(directory.glob("*.csv"))
75
+ latest = [f for f in all_csv_files if f.stem.endswith("latest")]
76
+ if len(latest) != 1:
77
+ return None
78
+ return latest[0]
79
+
80
+
81
+ def is_model_on_hub(model_name, revision="main") -> bool:
82
+ try:
83
+ model_name = model_name.replace(" ","")
84
+ author = model_name.split("/")[0]
85
+ model_id = model_name.split("/")[1]
86
+ if len(author) == 0 or len(model_id) == 0:
87
+ return False, "is not a valid model name. Please use the format `author/model_name`."
88
+ except Exception as e:
89
+ return False, "is not a valid model name. Please use the format `author/model_name`."
90
+
91
+ try:
92
+ models = list(hf_api.list_models(author=author, search=model_id))
93
+ matched = [model_name for m in models if m.modelId == model_name]
94
+ if len(matched) != 1:
95
+ return False, "was not found on the hub!"
96
+ else:
97
+ return True, None
98
+ except Exception as e:
99
+ print(f"Could not get the model from the hub.: {e}")
100
+ return False, "was not found on hub!"
101
+
102
+
103
+ def filter_persian_models(model_list):
104
+ """
105
+ Filters the provided list of models to include only those that support Persian (fa).
106
+
107
+ Args:
108
+ model_list (list): List of model names to filter.
109
+
110
+ Returns:
111
+ list: List of models that support Persian.
112
+ """
113
+ persian_models = []
114
+ for model_name in model_list:
115
+ try:
116
+ # Get model information from Hugging Face Hub
117
+ model_info = hf_api.model_info(model_name)
118
+ languages = model_info.cardData.get("languages", [])
119
+
120
+ # Check if Persian ('fa') is listed in the model's languages
121
+ if PERSIAN_LANGUAGE_CODE in languages:
122
+ persian_models.append(model_name)
123
+ print(f"{model_name} supports Persian language.")
124
+ else:
125
+ print(f"{model_name} does not support Persian language. Skipping.")
126
+ except Exception as e:
127
+ print(f"Error fetching model info for {model_name}: {str(e)}")
128
+
129
+ return persian_models
requirements.txt ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiohttp==3.8.4
2
+ aiosignal==1.3.1
3
+ async-timeout==4.0.2
4
+ attrs==23.1.0
5
+ certifi==2023.7.22
6
+ charset-normalizer==3.2.0
7
+ cmake==3.26.4
8
+ contourpy==1.1.0
9
+ Cython==3.0.0
10
+ datasets==2.13.1
11
+ dill==0.3.6
12
+ filelock==3.12.2
13
+ fonttools==4.40.0
14
+ frozenlist==1.4.0
15
+ fsspec==2023.6.0
16
+ huggingface-hub==0.16.4
17
+ idna==3.4
18
+ Jinja2==3.1.2
19
+ kiwisolver==1.4.4
20
+ lit==16.0.6
21
+ MarkupSafe==2.1.3
22
+ matplotlib==3.7.2
23
+ mpmath==1.3.0
24
+ multidict==6.0.4
25
+ multiprocess==0.70.14
26
+ networkx==3.1
27
+ numpy==1.25.2
28
+ nvidia-cublas-cu11==11.10.3.66
29
+ nvidia-cuda-cupti-cu11==11.7.101
30
+ nvidia-cuda-nvrtc-cu11==11.7.99
31
+ nvidia-cuda-runtime-cu11==11.7.99
32
+ nvidia-cudnn-cu11==8.5.0.96
33
+ nvidia-cufft-cu11==10.9.0.58
34
+ nvidia-curand-cu11==10.2.10.91
35
+ nvidia-cusolver-cu11==11.4.0.1
36
+ nvidia-cusparse-cu11==11.7.4.91
37
+ nvidia-nccl-cu11==2.14.3
38
+ nvidia-nvtx-cu11==11.7.91
39
+ packaging==23.1
40
+ pandas==2.0.3
41
+ Pillow==10.0.0
42
+ pyarrow==12.0.1
43
+ python-dateutil==2.8.2
44
+ pytz==2023.3
45
+ PyYAML==6.0.1
46
+ regex==2023.6.3
47
+ requests==2.31.0
48
+ responses==0.18.0
49
+ safetensors==0.3.1
50
+ six==1.16.0
51
+ sympy==1.12
52
+ tokenizers==0.13.3
53
+ torch==2.0.1
54
+ torchvision==0.15.2
55
+ tqdm==4.65.0
56
+ triton==2.0.0
57
+ typing_extensions==4.7.1
58
+ tzdata==2023.3
59
+ urllib3==2.0.4
60
+ xxhash==3.2.0
61
+ yarl==1.9.2
utils_display.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+
3
+ # These classes are for user facing column names, to avoid having to change them
4
+ # all around the code when a modif is needed
5
+ @dataclass
6
+ class ColumnContent:
7
+ name: str
8
+ type: str
9
+
10
+ def fields(raw_class):
11
+ return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
12
+
13
+ @dataclass(frozen=True)
14
+ class AutoEvalColumn: # Auto evals column
15
+ model = ColumnContent("Model", "markdown")
16
+ avg_wer = ColumnContent("Average WER ⬇️", "number")
17
+ rtf = ColumnContent("RTFx ⬆️️", "number")
18
+ ami_wer = ColumnContent("AMI", "number")
19
+ e22_wer = ColumnContent("Earnings22", "number")
20
+ gs_wer = ColumnContent("Gigaspeech", "number")
21
+ lsc_wer = ColumnContent("LS Clean", "number")
22
+ lso_wer = ColumnContent("LS Other", "number")
23
+ ss_wer = ColumnContent("SPGISpeech", "number")
24
+ tl_wer = ColumnContent("Tedlium", "number")
25
+ vp_wer = ColumnContent("Voxpopuli", "number")
26
+
27
+
28
+ def make_clickable_model(model_name):
29
+ link = f"https://huggingface.co/{model_name}"
30
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
31
+
32
+ def styled_error(error):
33
+ return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
34
+
35
+ def styled_warning(warn):
36
+ return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
37
+
38
+ def styled_message(message):
39
+ return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"