Spaces:
Build error
Build error
temp
Browse files- .ipynb_checkpoints/app-checkpoint.py +0 -165
- __pycache__/fire_network.cpython-37.pyc +0 -0
- __pycache__/lit.cpython-37.pyc +0 -0
- gradio_queue.db +0 -0
- gradio_queue.db-journal +0 -0
- how/__pycache__/__init__.cpython-37.pyc +0 -0
- how/layers/__pycache__/__init__.cpython-37.pyc +0 -0
- how/layers/__pycache__/attention.cpython-37.pyc +0 -0
- how/layers/__pycache__/dim_reduction.cpython-37.pyc +0 -0
- how/layers/__pycache__/functional.cpython-37.pyc +0 -0
- how/layers/__pycache__/pooling.cpython-37.pyc +0 -0
- how/networks/__pycache__/__init__.cpython-37.pyc +0 -0
- how/networks/__pycache__/how_net.cpython-37.pyc +0 -0
- how/utils/__pycache__/__init__.cpython-37.pyc +0 -0
- how/utils/__pycache__/whitening.cpython-37.pyc +0 -0
.ipynb_checkpoints/app-checkpoint.py
DELETED
@@ -1,165 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
|
5 |
-
import torch
|
6 |
-
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
from matplotlib import cm
|
9 |
-
from matplotlib import colors
|
10 |
-
from mpl_toolkits.axes_grid1 import ImageGrid
|
11 |
-
|
12 |
-
from torchvision import transforms
|
13 |
-
|
14 |
-
import fire_network
|
15 |
-
|
16 |
-
import numpy as np
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
from PIL import Image
|
21 |
-
|
22 |
-
# Possible Scales for multiscale inference
|
23 |
-
scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25]
|
24 |
-
|
25 |
-
device = 'cpu'
|
26 |
-
|
27 |
-
# Load net
|
28 |
-
state = torch.load('fire.pth', map_location='cpu')
|
29 |
-
state['net_params']['pretrained'] = None # no need for imagenet pretrained model
|
30 |
-
net = fire_network.init_network(**state['net_params']).to(device)
|
31 |
-
net.load_state_dict(state['state_dict'])
|
32 |
-
|
33 |
-
transform = transforms.Compose([
|
34 |
-
transforms.Resize(1024),
|
35 |
-
transforms.ToTensor(),
|
36 |
-
transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))
|
37 |
-
])
|
38 |
-
|
39 |
-
|
40 |
-
# which sf
|
41 |
-
sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
|
42 |
-
|
43 |
-
col = plt.get_cmap('tab10')
|
44 |
-
|
45 |
-
def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
|
46 |
-
|
47 |
-
im1_tensor = transform(im1).unsqueeze(0)
|
48 |
-
im2_tensor = transform(im2).unsqueeze(0)
|
49 |
-
|
50 |
-
im1_cv = np.array(im1)[:, :, ::-1].copy()
|
51 |
-
im2_cv = np.array(im2)[:, :, ::-1].copy()
|
52 |
-
|
53 |
-
# extract features
|
54 |
-
with torch.no_grad():
|
55 |
-
output1 = net.get_superfeatures(im1_tensor.to(device), scales=[scale_id])
|
56 |
-
feats1 = output1[0][0]
|
57 |
-
attns1 = output1[1][0]
|
58 |
-
strenghts1 = output1[2][0]
|
59 |
-
|
60 |
-
output2 = net.get_superfeatures(im2_tensor.to(device), scales=[scale_id])
|
61 |
-
feats2 = output2[0][0]
|
62 |
-
attns2 = output2[1][0]
|
63 |
-
strenghts2 = output2[2][0]
|
64 |
-
|
65 |
-
print(feats1.shape, feats2.shape)
|
66 |
-
print(attns1.shape, attns2.shape)
|
67 |
-
print(strenghts1.shape, strenghts2.shape)
|
68 |
-
|
69 |
-
# Store all binary SF att maps to show them all at once in the end
|
70 |
-
all_att_bin1 = []
|
71 |
-
all_att_bin2 = []
|
72 |
-
for n, i in enumerate(sf_idx_):
|
73 |
-
# all_atts[n].append(attn[j][scale_id][0,i,:,:].numpy())
|
74 |
-
att_heat = np.array(attns1[0,i,:,:].numpy(), dtype=np.float32)
|
75 |
-
att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
|
76 |
-
att_heat_bin = np.where(att_heat>threshold, 255, 0)
|
77 |
-
print(att_heat_bin)
|
78 |
-
all_att_bin1.append(att_heat_bin)
|
79 |
-
|
80 |
-
att_heat = np.array(attns2[0,i,:,:].numpy(), dtype=np.float32)
|
81 |
-
att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
|
82 |
-
att_heat_bin = np.where(att_heat>threshold, 255, 0)
|
83 |
-
all_att_bin2.append(att_heat_bin)
|
84 |
-
|
85 |
-
|
86 |
-
fin_img = []
|
87 |
-
img1rsz = np.copy(im1_cv)
|
88 |
-
print(im1.size)
|
89 |
-
print(img1rsz.shape)
|
90 |
-
for j, att in enumerate(all_att_bin1):
|
91 |
-
att = cv2.resize(att, im1.size, interpolation=cv2.INTER_NEAREST)
|
92 |
-
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
|
93 |
-
# att = cv2.resize(att, imgz[i].shape[:2][::-1])
|
94 |
-
# att = att.resize(shape)
|
95 |
-
# att = resize(att, im1.size)
|
96 |
-
mask2d = zip(*np.where(att==255))
|
97 |
-
for m,n in mask2d:
|
98 |
-
col_ = col.colors[j] if j < 7 else col.colors[j+1]
|
99 |
-
if j == 0: col_ = col.colors[9]
|
100 |
-
col_ = 255*np.array(colors.to_rgba(col_))[:3]
|
101 |
-
img1rsz[m,n, :] = col_[::-1]
|
102 |
-
fin_img.append(img1rsz)
|
103 |
-
|
104 |
-
img2rsz = np.copy(im2_cv)
|
105 |
-
for j, att in enumerate(all_att_bin2):
|
106 |
-
att = cv2.resize(att, im2.size, interpolation=cv2.INTER_NEAREST)
|
107 |
-
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
|
108 |
-
# # att = cv2.resize(att, imgz[i].shape[:2][::-1])
|
109 |
-
# att = att.resize(im2.shape)
|
110 |
-
# print('att:', att.shape)
|
111 |
-
mask2d = zip(*np.where(att==255))
|
112 |
-
for m,n in mask2d:
|
113 |
-
col_ = col.colors[j] if j < 7 else col.colors[j+1]
|
114 |
-
if j == 0: col_ = col.colors[9]
|
115 |
-
col_ = 255*np.array(colors.to_rgba(col_))[:3]
|
116 |
-
img2rsz[m,n, :] = col_[::-1]
|
117 |
-
fin_img.append(img2rsz)
|
118 |
-
|
119 |
-
|
120 |
-
fig = plt.figure()
|
121 |
-
grid = ImageGrid(fig, 111, nrows_ncols=(2, 1), axes_pad=0.1)
|
122 |
-
for ax, img in zip(grid, fin_img):
|
123 |
-
ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
124 |
-
ax.axis('scaled')
|
125 |
-
ax.axis('off')
|
126 |
-
plt.tight_layout()
|
127 |
-
# fig.suptitle("Matching SFs", fontsize=16)
|
128 |
-
|
129 |
-
# fig.canvas.draw()
|
130 |
-
# # Now we can save it to a numpy array.
|
131 |
-
# data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
132 |
-
# data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
133 |
-
return fig
|
134 |
-
|
135 |
-
|
136 |
-
# GRADIO APP
|
137 |
-
title = "Visualizing Super-features"
|
138 |
-
description = "TBD"
|
139 |
-
article = "<p style='text-align: center'><a href='https://github.com/naver/fire' target='_blank'>Original Github Repo</a></p>"
|
140 |
-
|
141 |
-
|
142 |
-
# css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
|
143 |
-
# css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
|
144 |
-
# css = ".output_image, .input_image {height: 600px !important}"
|
145 |
-
css = ".input_image {height: 600px !important} .output_image, {height: 1200px !important}"
|
146 |
-
# css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
|
147 |
-
|
148 |
-
|
149 |
-
iface = gr.Interface(
|
150 |
-
fn=generate_matching_superfeatures,
|
151 |
-
inputs=[
|
152 |
-
gr.inputs.Image(shape=(1024, 1024), type="pil"),
|
153 |
-
gr.inputs.Image(shape=(1024, 1024), type="pil"),
|
154 |
-
gr.inputs.Slider(minimum=1, maximum=7, step=1, default=2, label="Scale"),
|
155 |
-
gr.inputs.Slider(minimum=1, maximum=255, step=25, default=50, label="Binarizatio Threshold")],
|
156 |
-
outputs="plot",
|
157 |
-
# outputs=gr.outputs.Image(shape=(1024,2048), type="plot"),
|
158 |
-
enable_queue=True,
|
159 |
-
title=title,
|
160 |
-
description=description,
|
161 |
-
article=article,
|
162 |
-
css=css,
|
163 |
-
examples=[["chateau_1.png", "chateau_2.png", 6, 50]],
|
164 |
-
)
|
165 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__pycache__/fire_network.cpython-37.pyc
DELETED
Binary file (4.67 kB)
|
|
__pycache__/lit.cpython-37.pyc
DELETED
Binary file (2.59 kB)
|
|
gradio_queue.db
DELETED
File without changes
|
gradio_queue.db-journal
DELETED
Binary file (512 Bytes)
|
|
how/__pycache__/__init__.cpython-37.pyc
DELETED
Binary file (296 Bytes)
|
|
how/layers/__pycache__/__init__.cpython-37.pyc
DELETED
Binary file (312 Bytes)
|
|
how/layers/__pycache__/attention.cpython-37.pyc
DELETED
Binary file (674 Bytes)
|
|
how/layers/__pycache__/dim_reduction.cpython-37.pyc
DELETED
Binary file (1.5 kB)
|
|
how/layers/__pycache__/functional.cpython-37.pyc
DELETED
Binary file (2.29 kB)
|
|
how/layers/__pycache__/pooling.cpython-37.pyc
DELETED
Binary file (959 Bytes)
|
|
how/networks/__pycache__/__init__.cpython-37.pyc
DELETED
Binary file (213 Bytes)
|
|
how/networks/__pycache__/how_net.cpython-37.pyc
DELETED
Binary file (4.01 kB)
|
|
how/utils/__pycache__/__init__.cpython-37.pyc
DELETED
Binary file (202 Bytes)
|
|
how/utils/__pycache__/whitening.cpython-37.pyc
DELETED
Binary file (1.27 kB)
|
|