SuperFeatures / app.py
YannisK's picture
edits
c8e8ad1
raw
history blame
9.95 kB
import gradio as gr
import cv2
import torch
import torch.utils.data as data
from torchvision import transforms
from torch import nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib import colors
from mpl_toolkits.axes_grid1 import ImageGrid
import fire_network
import numpy as np
from PIL import Image
# Possible Scales for multiscale inference
scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25]
device = 'cpu'
# Load net
state = torch.load('fire.pth', map_location='cpu')
state['net_params']['pretrained'] = None # no need for imagenet pretrained model
net = fire_network.init_network(**state['net_params']).to(device)
net.load_state_dict(state['state_dict'])
# ---------------------------------------
transform = transforms.Compose([
transforms.Resize(1024),
transforms.ToTensor(),
transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))
])
# ---------------------------------------
# class ImgDataset(data.Dataset):
# def __init__(self, images, imsize):
# self.images = images
# self.imsize = imsize
# self.transform = transforms.Compose([transforms.ToTensor(), \
# transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))])
# def __getitem__(self, index):
# img = self.images[index]
# img.thumbnail((self.imsize, self.imsize), Image.Resampling.LANCZOS)
# print('after imresize:', img.size)
# return self.transform(img)
# def __len__(self):
# return len(self.images)
# ---------------------------------------
def match(query_feat, pos_feat, LoweRatioTh=0.9):
# first perform reciprocal nn
dist = torch.cdist(query_feat, pos_feat)
best1 = torch.argmin(dist, dim=1)
best2 = torch.argmin(dist, dim=0)
print('best2.size',best2.size())
arange = torch.arange(best2.size(0))
reciprocal = best1[best2]==arange
# check Lowe ratio test
dist2 = dist.clone()
dist2[best2,arange] = float('Inf')
dist2_second2 = torch.argmin(dist2, dim=0)
ratio1to2 = dist[best2,arange] / dist2_second2
valid = torch.logical_and(reciprocal, ratio1to2<=LoweRatioTh)
pindices = torch.where(valid)[0]
qindices = best2[pindices]
# keep only the ones with same indices
valid = pindices==qindices
return pindices[valid]
# sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
col = plt.get_cmap('tab10')
def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50, sf_ids='', only_matching=True):
print('im1:', im1.size)
print('im2:', im2.size)
# which sf
sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
if sf_ids.lower().startswith('r'):
n_sf_ids = int(sf_ids[1:])
sf_idx_ = np.random.randint(256, size=n_sf_ids)
elif sf_ids != '':
sf_idx_ = map(int, sf_ids.strip().split(','))
# dataset_ = ImgDataset(images=[im1, im2], imsize=1024)
# loader = torch.utils.data.DataLoader(dataset_, shuffle=False, pin_memory=True)
im1_tensor = transform(im1).unsqueeze(0)
im2_tensor = transform(im2).unsqueeze(0)
im1_cv = np.array(im1)[:, :, ::-1].copy()
im2_cv = np.array(im2)[:, :, ::-1].copy()
# extract features
with torch.no_grad():
output1 = net.get_superfeatures(im1_tensor.to(device), scales=[scales[scale_id]])
feats1 = output1[0][0]
attns1 = output1[1][0]
strenghts1 = output1[2][0]
output2 = net.get_superfeatures(im2_tensor.to(device), scales=[scales[scale_id]])
feats2 = output2[0][0]
attns2 = output2[1][0]
strenghts2 = output2[2][0]
feats1n = F.normalize(feats1, dim=1)
feats2n = F.normalize(feats2, dim=1)
ind_match = match(feats1n, feats2n)
print('ind', ind_match)
print('ind.shape', ind_match.shape)
# outputs = []
# for im_tensor in loader:
# outputs.append(net.get_superfeatures(im_tensor.to(device), scales=[scales[scale_id]]))
# feats1 = outputs[0][0][0]
# attns1 = outputs[0][1][0]
# strenghts1 = outputs[0][2][0]
# feats2 = outputs[1][0][0]
# attns2 = outputs[1][1][0]
# strenghts2 = outputs[1][2][0]
print(feats1.shape, feats2.shape)
print(attns1.shape, attns2.shape)
print(strenghts1.shape, strenghts2.shape)
# if only_matching:
# Store all binary SF att maps to show them all at once in the end
all_att_bin1 = []
all_att_bin2 = []
for n, i in enumerate(sf_idx_):
# all_atts[n].append(attn[j][scale_id][0,i,:,:].numpy())
att_heat = np.array(attns1[0,i,:,:].numpy(), dtype=np.float32)
att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
att_heat_bin = np.where(att_heat>threshold, 255, 0)
# print(att_heat_bin)
all_att_bin1.append(att_heat_bin)
att_heat = np.array(attns2[0,i,:,:].numpy(), dtype=np.float32)
att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
att_heat_bin = np.where(att_heat>threshold, 255, 0)
all_att_bin2.append(att_heat_bin)
fin_img = []
img1rsz = np.copy(im1_cv)
print('im1:', im1.size)
print('img1rsz:', img1rsz.shape)
for j, att in enumerate(all_att_bin1):
att = cv2.resize(att, im1.size, interpolation=cv2.INTER_NEAREST)
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
# att = cv2.resize(att, imgz[i].shape[:2][::-1])
# att = att.resize(shape)
# att = resize(att, im1.size)
mask2d = zip(*np.where(att==255))
for m,n in mask2d:
col_ = col.colors[j] if j < 7 else col.colors[j+1]
if j == 0: col_ = col.colors[9]
col_ = 255*np.array(colors.to_rgba(col_))[:3]
img1rsz[m,n, :] = col_[::-1]
fin_img.append(img1rsz)
img2rsz = np.copy(im2_cv)
print('im2:', im2.size)
print('img2rsz:', img2rsz.shape)
for j, att in enumerate(all_att_bin2):
att = cv2.resize(att, im2.size, interpolation=cv2.INTER_NEAREST)
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
# # att = cv2.resize(att, imgz[i].shape[:2][::-1])
# att = att.resize(im2.shape)
# print('att:', att.shape)
mask2d = zip(*np.where(att==255))
for m,n in mask2d:
col_ = col.colors[j] if j < 7 else col.colors[j+1]
if j == 0: col_ = col.colors[9]
col_ = 255*np.array(colors.to_rgba(col_))[:3]
img2rsz[m,n, :] = col_[::-1]
fin_img.append(img2rsz)
fig1 = plt.figure(1)
plt.imshow(cv2.cvtColor(img1rsz, cv2.COLOR_BGR2RGB))
ax1 = plt.gca()
# ax1.axis('scaled')
ax1.axis('off')
plt.tight_layout()
# fig1.canvas.draw()
fig2 = plt.figure(2)
plt.imshow(cv2.cvtColor(img2rsz, cv2.COLOR_BGR2RGB))
ax2 = plt.gca()
# ax2.axis('scaled')
ax2.axis('off')
plt.tight_layout()
# fig2.canvas.draw()
# fig = plt.figure()
# grid = ImageGrid(fig, 111, nrows_ncols=(2, 1), axes_pad=0.1)
# for ax, img in zip(grid, fin_img):
# ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# ax.axis('scaled')
# ax.axis('off')
# plt.tight_layout()
# fig.suptitle("Matching SFs", fontsize=16)
# fig.canvas.draw()
# # Now we can save it to a numpy array.
# data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
# data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return fig1, fig2, ','.join(map(str, sf_idx_))
# GRADIO APP
title = "Visualizing Super-features"
description = "This is a visualization demo for the ICLR 2022 paper <b><a href='https://github.com/naver/fire' target='_blank'>Learning Super-Features for Image Retrieval</a></p></b>"
article = "<p style='text-align: center'><a href='https://github.com/naver/fire' target='_blank'>Original Github Repo</a></p>"
# css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
# css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
# css = ".output_image, .input_image {hieght: 1000px !important}"
css = ".input_image, .input_image {height: 600px !important; width: 600px !important;} "
# css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
iface = gr.Interface(
fn=generate_matching_superfeatures,
inputs=[
# gr.inputs.Image(shape=(1024, 1024), type="pil", label="First Image"),
# gr.inputs.Image(shape=(1024, 1024), type="pil", label="Second Image"),
gr.inputs.Image(type="pil", label="First Image"),
gr.inputs.Image(type="pil", label="Second Image"),
gr.inputs.Slider(minimum=0, maximum=6, step=1, default=2, label="Scale"),
gr.inputs.Slider(minimum=1, maximum=255, step=25, default=100, label="Binarization Threshold"),
gr.inputs.Textbox(lines=1, default="", label="SF IDs to show (comma separated numbers from 0-255; typing 'rX' will return X random SFs", optional=True),
gr.inputs.Checkbox(default=True, label="Show only matching SFs", optional=False),
],
outputs=[
gr.outputs.Image(type="plot", label="First Image SFs"),
gr.outputs.Image(type="plot", label="Second Image SFs"),
gr.outputs.Textbox(label="SFs")],
# outputs=gr.outputs.Image(shape=(1024,2048), type="plot"),
title=title,
theme='peach',
layout="horizontal",
description=description,
article=article,
css=css,
examples=[
["chateau_1.png", "chateau_2.png", 2, 100, '55,14,5,4,52,57,40,9', True],
["anafi1.jpeg", "anafi2.jpeg", 4, 50, '99,100,142,213,236', True],
["areopoli1.jpeg", "areopoli2.jpeg", 4, 50, '72,44,142,213,236', True],
]
)
iface.launch(enable_queue=True)