SuperFeatures / how /utils /download.py
YannisK's picture
temp state
32408ed
raw
history blame
1.94 kB
"""Functions for downloading files necessary for training and evaluation"""
import os.path
from cirtorch.utils.download import download_train, download_test
from . import io_helpers
def download_for_eval(evaluation, demo_eval, dataset_url, globals):
"""Download datasets for evaluation and network if given by url"""
# Datasets
datasets = evaluation['global_descriptor']['datasets'] \
+ evaluation['local_descriptor']['datasets']
download_datasets(datasets, dataset_url, globals)
# Network
if demo_eval and (demo_eval['net_path'].startswith("http://") \
or demo_eval['net_path'].startswith("https://")):
net_name = os.path.basename(demo_eval['net_path'])
io_helpers.download_files([net_name], globals['root_path'] / "models",
os.path.dirname(demo_eval['net_path']) + "/",
logfunc=globals["logger"].info)
demo_eval['net_path'] = globals['root_path'] / "models" / net_name
def download_for_train(validation, dataset_url, globals):
"""Download datasets for training"""
datasets = ["train"] + validation['global_descriptor']['datasets'] \
+ validation['local_descriptor']['datasets']
download_datasets(datasets, dataset_url, globals)
def download_datasets(datasets, dataset_url, globals):
"""Download data associated with each required dataset"""
if "val_eccv20" in datasets:
download_train(globals['root_path'])
io_helpers.download_files(["retrieval-SfM-120k-val-eccv2020.pkl"],
globals['root_path'] / "train/retrieval-SfM-120k",
dataset_url, logfunc=globals["logger"].info)
elif "train" in datasets:
download_train(globals['root_path'])
if "roxford5k" in datasets or "rparis6k" in datasets:
download_test(globals['root_path'])