|
|
|
|
|
|
|
|
|
from pdb import set_trace as bb |
|
import warnings |
|
|
|
import numpy as np |
|
from PIL import Image, ImageOps |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torchvision import transforms as tvf |
|
|
|
from . import transforms_tools as F |
|
from .utils import DatasetWithRng |
|
|
|
''' |
|
Example command to try out some transformation chain: |
|
|
|
python -m pytools.transforms --trfs "Scale(384), ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1), RandomRotation(10), RandomTilting(0.5, 'all'), RandomScale(240,320), RandomCrop(224)" |
|
''' |
|
|
|
def instanciate_transforms(transforms, use_gpu=False, rng=None, compose=True): |
|
''' Instanciate a sequence of transformations. |
|
|
|
transforms: (str, list) |
|
Comma-separated list of transformations. |
|
Ex: "Rotate(10), Scale(256)" |
|
''' |
|
try: |
|
transforms = transforms or '[]' |
|
|
|
if isinstance(transforms, str): |
|
if transforms.lstrip()[0] not in '[(': transforms = f'[{transforms}]' |
|
if compose: transforms = f'Compose({transforms})' |
|
transforms = eval(transforms) |
|
|
|
if isinstance(transforms, list) and transforms and isinstance(transforms[0], str): |
|
transforms = [eval(trf) for trf in transforms] |
|
if compose: transforms = Compose(transforms) |
|
|
|
if use_gpu and not isinstance(transforms, nn.Module): |
|
while hasattr(transforms,'transforms') or hasattr(transforms,'transform'): |
|
transforms = getattr(transforms,'transforms',getattr(transforms,'transform',None)) |
|
transforms = [trf for trf in transforms if isinstance(trf, nn.Module)] |
|
transforms = nn.Sequential(*transforms) if compose else nn.ModuleList(transforms) |
|
|
|
if transforms and rng: |
|
for trf in transforms.transforms: |
|
assert hasattr(trf, 'rng'), f"Transformation {trf} has no self.rng" |
|
trf.rng = rng |
|
|
|
if isinstance(transforms, Compose) and len(transforms.transforms) == 1: |
|
transforms = transforms.transforms[0] |
|
return transforms |
|
|
|
except Exception as e: |
|
print("\nError: Cannot interpret this transform list: %s\n" % transforms) |
|
raise e |
|
|
|
|
|
|
|
class Compose (DatasetWithRng): |
|
def __init__(self, transforms, **rng_seed): |
|
super().__init__(**rng_seed) |
|
self.transforms = [self.with_same_rng(trf) for trf in transforms] |
|
|
|
def __call__(self, data): |
|
for trf in self.transforms: |
|
data = trf(data) |
|
return data |
|
|
|
|
|
class Scale (DatasetWithRng): |
|
""" Rescale the input PIL.Image to a given size. |
|
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py |
|
|
|
The smallest dimension of the resulting image will be = size. |
|
|
|
if largest == True: same behaviour for the largest dimension. |
|
|
|
if not can_upscale: don't upscale |
|
if not can_downscale: don't downscale |
|
""" |
|
def __init__(self, size, interpolation=Image.BILINEAR, largest=False, |
|
can_upscale=True, can_downscale=True, **rng_seed): |
|
super().__init__(**rng_seed) |
|
assert isinstance(size, int) or (len(size) == 2) |
|
self.size = size |
|
self.interpolation = interpolation |
|
self.largest = largest |
|
self.can_upscale = can_upscale |
|
self.can_downscale = can_downscale |
|
|
|
def __repr__(self): |
|
fmt_str = "RandomScale(%s" % str(self.size) |
|
if self.largest: fmt_str += ', largest=True' |
|
if not self.can_upscale: fmt_str += ', can_upscale=False' |
|
if not self.can_downscale: fmt_str += ', can_downscale=False' |
|
return fmt_str+')' |
|
|
|
def get_params(self, imsize): |
|
w,h = imsize |
|
if isinstance(self.size, int): |
|
cmp = lambda a,b: (a>=b) if self.largest else (a<=b) |
|
if (cmp(w, h) and w == self.size) or (cmp(h, w) and h == self.size): |
|
ow, oh = w, h |
|
elif cmp(w, h): |
|
ow = self.size |
|
oh = int(self.size * h / w) |
|
else: |
|
oh = self.size |
|
ow = int(self.size * w / h) |
|
else: |
|
ow, oh = self.size |
|
return ow, oh |
|
|
|
def __call__(self, inp): |
|
img = F.grab(inp,'img') |
|
w, h = img.size |
|
|
|
size2 = ow, oh = self.get_params(img.size) |
|
|
|
if size2 != img.size: |
|
a1, a2 = img.size, size2 |
|
if (self.can_upscale and min(a1) < min(a2)) or (self.can_downscale and min(a1) > min(a2)): |
|
img = img.resize(size2, self.interpolation) |
|
|
|
return F.update(inp, img=img, homography=np.diag((ow/w,oh/h,1))) |
|
|
|
|
|
|
|
class RandomScale (Scale): |
|
"""Rescale the input PIL.Image to a random size. |
|
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py |
|
|
|
Args: |
|
min_size (int): min size of the smaller edge of the picture. |
|
max_size (int): max size of the smaller edge of the picture. |
|
|
|
ar (float or tuple): |
|
max change of aspect ratio (width/height). |
|
|
|
interpolation (int, optional): Desired interpolation. Default is |
|
``PIL.Image.BILINEAR`` |
|
""" |
|
|
|
def __init__(self, min_size, max_size, ar=1, larger=False, |
|
can_upscale=False, can_downscale=True, interpolation=Image.BILINEAR): |
|
Scale.__init__(self, (min_size,max_size), can_upscale=can_upscale, can_downscale=can_downscale, interpolation=interpolation) |
|
assert type(min_size) == type(max_size), 'min_size and max_size can only be 2 ints or 2 floats' |
|
assert isinstance(min_size, int) and min_size >= 1 or isinstance(min_size, float) and min_size>0 |
|
assert isinstance(max_size, (int,float)) and min_size <= max_size |
|
self.min_size = min_size |
|
self.max_size = max_size |
|
if type(ar) in (float,int): ar = (min(1/ar,ar),max(1/ar,ar)) |
|
assert 0.2 < ar[0] <= ar[1] < 5 |
|
self.ar = ar |
|
self.larger = larger |
|
|
|
def get_params(self, imsize): |
|
w,h = imsize |
|
if isinstance(self.min_size, float): min_size = int(self.min_size*min(w,h) + 0.5) |
|
if isinstance(self.max_size, float): max_size = int(self.max_size*min(w,h) + 0.5) |
|
if isinstance(self.min_size, int): min_size = self.min_size |
|
if isinstance(self.max_size, int): max_size = self.max_size |
|
|
|
if not(self.can_upscale) and not(self.larger): |
|
max_size = min(max_size,min(w,h)) |
|
|
|
size = int(0.5 + F.rand_log_uniform(self.rng, min_size, max_size)) |
|
if not(self.can_upscale) and self.larger: |
|
size = min(size, min(w,h)) |
|
|
|
ar = F.rand_log_uniform(self.rng, *self.ar) |
|
|
|
if w < h: |
|
ow = size |
|
oh = int(0.5 + size * h / w / ar) |
|
if oh < min_size: |
|
ow,oh = int(0.5 + ow*float(min_size)/oh),min_size |
|
else: |
|
oh = size |
|
ow = int(0.5 + size * w / h * ar) |
|
if ow < min_size: |
|
ow,oh = min_size,int(0.5 + oh*float(min_size)/ow) |
|
|
|
assert ow >= min_size, 'image too small (width=%d < min_size=%d)' % (ow, min_size) |
|
assert oh >= min_size, 'image too small (height=%d < min_size=%d)' % (oh, min_size) |
|
return ow, oh |
|
|
|
|
|
|
|
class RandomCrop (DatasetWithRng): |
|
"""Crop the given PIL Image at a random location. |
|
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py |
|
|
|
Args: |
|
size (sequence or int): Desired output size of the crop. If size is an |
|
int instead of sequence like (h, w), a square crop (size, size) is |
|
made. |
|
padding (int or sequence, optional): Optional padding on each border |
|
of the image. Default is 0, i.e no padding. If a sequence of length |
|
4 is provided, it is used to pad left, top, right, bottom borders |
|
respectively. |
|
""" |
|
|
|
def __init__(self, size, padding=0, **rng_seed): |
|
super().__init__(**rng_seed) |
|
if isinstance(size, int): |
|
self.size = (int(size), int(size)) |
|
else: |
|
self.size = size |
|
self.padding = padding |
|
|
|
def __repr__(self): |
|
return "RandomCrop(%s)" % str(self.size) |
|
|
|
def get_params(self, img, output_size): |
|
w, h = img.size |
|
th, tw = output_size |
|
assert h >= th and w >= tw, "Image of %dx%d is too small for crop %dx%d" % (w,h,tw,th) |
|
|
|
y = self.rng.integers(0, h - th) if h > th else 0 |
|
x = self.rng.integers(0, w - tw) if w > tw else 0 |
|
return x, y, tw, th |
|
|
|
def __call__(self, inp): |
|
img = F.grab(inp,'img') |
|
|
|
padl = padt = 0 |
|
if self.padding: |
|
if F.is_pil_image(img): |
|
img = ImageOps.expand(img, border=self.padding, fill=0) |
|
else: |
|
assert isinstance(img, F.DummyImg) |
|
img = img.expand(border=self.padding) |
|
if isinstance(self.padding, int): |
|
padl = padt = self.padding |
|
else: |
|
padl, padt = self.padding[0:2] |
|
|
|
i, j, tw, th = self.get_params(img, self.size) |
|
img = img.crop((i, j, i+tw, j+th)) |
|
|
|
return F.update(inp, img=img, homography=np.float32(((1,0,padl-i),(0,1,padt-j),(0,0,1)))) |
|
|
|
|
|
class CenterCrop (RandomCrop): |
|
"""Crops the given PIL Image at the center. |
|
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py |
|
|
|
Args: |
|
size (sequence or int): Desired output size of the crop. If size is an |
|
int instead of sequence like (h, w), a square crop (size, size) is |
|
made. |
|
""" |
|
@staticmethod |
|
def get_params(img, output_size): |
|
w, h = img.size |
|
th, tw = output_size |
|
y = int(0.5 +((h - th) / 2.)) |
|
x = int(0.5 +((w - tw) / 2.)) |
|
return x, y, tw, th |
|
|
|
|
|
class RandomRotation (DatasetWithRng): |
|
"""Rescale the input PIL.Image to a random size. |
|
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py |
|
|
|
Args: |
|
degrees (float): |
|
rotation angle. |
|
|
|
interpolation (int, optional): Desired interpolation. Default is |
|
``PIL.Image.BILINEAR`` |
|
""" |
|
|
|
def __init__(self, degrees, interpolation=Image.BILINEAR, **rng_seed): |
|
super().__init__(**rng_seed) |
|
self.degrees = degrees |
|
self.interpolation = interpolation |
|
|
|
def __repr__(self): |
|
return f"RandomRotation({self.degrees})" |
|
|
|
def __call__(self, inp): |
|
img = F.grab(inp,'img') |
|
w, h = img.size |
|
|
|
angle = self.rng.uniform(-self.degrees, self.degrees) |
|
|
|
img = img.rotate(angle, resample=self.interpolation) |
|
w2, h2 = img.size |
|
|
|
trf = F.translate(w2/2,h2/2) @ F.rotate(-angle * np.pi/180) @ F.translate(-w/2,-h/2) |
|
return F.update(inp, img=img, homography=trf) |
|
|
|
|
|
class RandomTilting (DatasetWithRng): |
|
"""Apply a random tilting (left, right, up, down) to the input PIL.Image |
|
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py |
|
|
|
Args: |
|
maginitude (float): |
|
maximum magnitude of the random skew (value between 0 and 1) |
|
directions (string): |
|
tilting directions allowed (all, left, right, up, down) |
|
examples: "all", "left,right", "up-down-right" |
|
""" |
|
|
|
def __init__(self, magnitude, directions='all', **rng_seed): |
|
super().__init__(**rng_seed) |
|
self.magnitude = magnitude |
|
self.directions = directions.lower().replace(',',' ').replace('-',' ') |
|
|
|
def __repr__(self): |
|
return "RandomTilt(%g, '%s')" % (self.magnitude,self.directions) |
|
|
|
def __call__(self, inp): |
|
img = F.grab(inp,'img') |
|
w, h = img.size |
|
|
|
x1,y1,x2,y2 = 0,0,h,w |
|
original_plane = [(y1, x1), (y2, x1), (y2, x2), (y1, x2)] |
|
|
|
max_skew_amount = max(w, h) |
|
max_skew_amount = int(np.ceil(max_skew_amount * self.magnitude)) |
|
skew_amount = self.rng.integers(1, max_skew_amount) |
|
|
|
if self.directions == 'all': |
|
choices = [0,1,2,3] |
|
else: |
|
dirs = ['left', 'right', 'up', 'down'] |
|
choices = [] |
|
for d in self.directions.split(): |
|
try: |
|
choices.append(dirs.index(d)) |
|
except: |
|
raise ValueError('Tilting direction %s not recognized' % d) |
|
|
|
skew_direction = self.rng.choice(choices) |
|
|
|
|
|
|
|
if skew_direction == 0: |
|
|
|
new_plane = [(y1, x1 - skew_amount), |
|
(y2, x1), |
|
(y2, x2), |
|
(y1, x2 + skew_amount)] |
|
elif skew_direction == 1: |
|
|
|
new_plane = [(y1, x1), |
|
(y2, x1 - skew_amount), |
|
(y2, x2 + skew_amount), |
|
(y1, x2)] |
|
elif skew_direction == 2: |
|
|
|
new_plane = [(y1 - skew_amount, x1), |
|
(y2 + skew_amount, x1), |
|
(y2, x2), |
|
(y1, x2)] |
|
elif skew_direction == 3: |
|
|
|
new_plane = [(y1, x1), |
|
(y2, x1), |
|
(y2 + skew_amount, x2), |
|
(y1 - skew_amount, x2)] |
|
|
|
|
|
|
|
homography = F.homography_from_4pts(original_plane, new_plane) |
|
img = img.transform(img.size, Image.PERSPECTIVE, homography, resample=Image.BICUBIC) |
|
|
|
homography = np.linalg.pinv(np.float32(homography+(1,)).reshape(3,3)) |
|
return F.update(inp, img=img, homography=homography) |
|
|
|
|
|
RandomHomography = RandomTilt = RandomTilting |
|
|
|
|
|
class Homography(object): |
|
"""Apply a known tilting to an image |
|
""" |
|
def __init__(self, *homography): |
|
assert len(homography) == 8 |
|
self.homography = homography |
|
|
|
def __call__(self, inp): |
|
img = F.grab(inp, 'img') |
|
homography = self.homography |
|
|
|
img = img.transform(img.size, Image.PERSPECTIVE, homography, resample=Image.BICUBIC) |
|
|
|
homography = np.linalg.pinv(np.float32(list(homography)+[1]).reshape(3,3)) |
|
return F.update(inp, img=img, homography=homography) |
|
|
|
|
|
|
|
class StillTransform (DatasetWithRng): |
|
""" Takes and return an image, without changing its shape or geometry. |
|
""" |
|
def _transform(self, img): |
|
raise NotImplementedError() |
|
|
|
def __call__(self, inp): |
|
img = F.grab(inp,'img') |
|
|
|
|
|
try: |
|
img = self._transform(img) |
|
except TypeError: |
|
pass |
|
|
|
return F.update(inp, img=img) |
|
|
|
|
|
|
|
class PixelNoise (StillTransform): |
|
""" Takes an image, and add random white noise. |
|
""" |
|
def __init__(self, ampl=20, **rng_seed): |
|
super().__init__(**rng_seed) |
|
assert 0 <= ampl < 255 |
|
self.ampl = ampl |
|
|
|
def __repr__(self): |
|
return "PixelNoise(%g)" % self.ampl |
|
|
|
def _transform(self, img): |
|
img = np.float32(img) |
|
img += self.rng.uniform(0.5-self.ampl/2, 0.5+self.ampl/2, size=img.shape) |
|
return Image.fromarray(np.uint8(img.clip(0,255))) |
|
|
|
|
|
|
|
class ColorJitter (StillTransform): |
|
"""Randomly change the brightness, contrast and saturation of an image. |
|
Copied from https://github.com/pytorch in torchvision/transforms/transforms.py |
|
|
|
Args: |
|
brightness (float): How much to jitter brightness. brightness_factor |
|
is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. |
|
contrast (float): How much to jitter contrast. contrast_factor |
|
is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. |
|
saturation (float): How much to jitter saturation. saturation_factor |
|
is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. |
|
hue(float): How much to jitter hue. hue_factor is chosen uniformly from |
|
[-hue, hue]. Should be >=0 and <= 0.5. |
|
""" |
|
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): |
|
self.brightness = brightness |
|
self.contrast = contrast |
|
self.saturation = saturation |
|
self.hue = hue |
|
|
|
def __repr__(self): |
|
return "ColorJitter(%g,%g,%g,%g)" % ( |
|
self.brightness, self.contrast, self.saturation, self.hue) |
|
|
|
def get_params(self, brightness, contrast, saturation, hue): |
|
"""Get a randomized transform to be applied on image. |
|
Arguments are same as that of __init__. |
|
Returns: |
|
Transform which randomly adjusts brightness, contrast and |
|
saturation in a random order. |
|
""" |
|
transforms = [] |
|
if brightness > 0: |
|
brightness_factor = self.rng.uniform(max(0, 1 - brightness), 1 + brightness) |
|
transforms.append(tvf.Lambda(lambda img: F.adjust_brightness(img, brightness_factor))) |
|
|
|
if contrast > 0: |
|
contrast_factor = self.rng.uniform(max(0, 1 - contrast), 1 + contrast) |
|
transforms.append(tvf.Lambda(lambda img: F.adjust_contrast(img, contrast_factor))) |
|
|
|
if saturation > 0: |
|
saturation_factor = self.rng.uniform(max(0, 1 - saturation), 1 + saturation) |
|
transforms.append(tvf.Lambda(lambda img: F.adjust_saturation(img, saturation_factor))) |
|
|
|
if hue > 0: |
|
hue_factor = self.rng.uniform(-hue, hue) |
|
transforms.append(tvf.Lambda(lambda img: F.adjust_hue(img, hue_factor))) |
|
|
|
|
|
self.rng.shuffle(transforms) |
|
transform = tvf.Compose(transforms) |
|
return transform |
|
|
|
def _transform(self, img): |
|
transform = self.get_params(self.brightness, self.contrast, self.saturation, self.hue) |
|
return transform(img) |
|
|
|
|
|
def pil_loader(path, mode='RGB'): |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
|
|
with (path if hasattr(path,'read') else open(path, 'rb')) as f: |
|
img = Image.open(f) |
|
return img.convert(mode) |
|
|
|
def torchvision_loader(path, mode='RGB'): |
|
from torchvision.io import read_file, decode_image, read_image, image |
|
return read_image(getattr(path,'name',path), mode=getattr(image.ImageReadMode,mode)) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
from matplotlib import pyplot as pl |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser("Script to try out and visualize transformations") |
|
parser.add_argument('--img', type=str, default='imgs/test.png', help='input image') |
|
parser.add_argument('--trfs', type=str, required=True, help='list of transformations') |
|
parser.add_argument('--layout', type=int, nargs=2, default=(3,3), help='nb of rows,cols') |
|
args = parser.parse_args() |
|
|
|
img = dict(img=pil_loader(args.img)) |
|
|
|
trfs = instanciate_transforms(args.trfs) |
|
|
|
pl.subplots_adjust(0,0,1,1) |
|
nr,nc = args.layout |
|
|
|
while True: |
|
t0 = now() |
|
imgs2 = [trfs(img) for _ in range(nr*nc)] |
|
|
|
for j in range(nr): |
|
for i in range(nc): |
|
pl.subplot(nr,nc,i+j*nc+1) |
|
img2 = img if i==j==0 else imgs2.pop() |
|
img2 = img2['img'] |
|
pl.imshow(img2) |
|
pl.xlabel("%d x %d" % img2.size) |
|
print(f'Took {now() - t0:.2f} seconds') |
|
pl.show() |
|
|