Spaces:
Runtime error
Runtime error
import torch | |
from pipelines.inverted_ve_pipeline import STYLE_DESCRIPTION_DICT, create_image_grid | |
import gradio as gr | |
import os, json, cv2 | |
import numpy as np | |
from PIL import Image | |
from pipelines.pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline | |
from diffusers import ControlNetModel, AutoencoderKL | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
from random import randint | |
from utils import init_latent | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
if device == 'cpu': | |
torch_dtype = torch.float32 | |
else: | |
torch_dtype = torch.float16 | |
def memory_efficient(model): | |
try: | |
model.to(device) | |
except Exception as e: | |
print("Error moving model to device:", e) | |
try: | |
model.enable_model_cpu_offload() | |
except AttributeError: | |
print("enable_model_cpu_offload is not supported.") | |
try: | |
model.enable_vae_slicing() | |
except AttributeError: | |
print("enable_vae_slicing is not supported.") | |
if device == 'cuda': | |
try: | |
model.enable_xformers_memory_efficient_attention() | |
except AttributeError: | |
print("enable_xformers_memory_efficient_attention is not supported.") | |
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0", torch_dtype=torch_dtype) | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype) | |
model_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch_dtype | |
) | |
print("vae") | |
memory_efficient(vae) | |
print("control") | |
memory_efficient(controlnet) | |
print("ControlNet-SDXL") | |
memory_efficient(model_controlnet) | |
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device) | |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas") | |
# controlnet_scale, canny thres 1, 2 (2 > 1, 2:1, 3:1) | |
def parse_config(config): | |
with open(config, 'r') as f: | |
config = json.load(f) | |
return config | |
def get_depth_map(image): | |
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device) | |
with torch.no_grad(), torch.autocast(device): | |
depth_map = depth_estimator(image).predicted_depth | |
depth_map = torch.nn.functional.interpolate( | |
depth_map.unsqueeze(1), | |
size=(1024, 1024), | |
mode="bicubic", | |
align_corners=False, | |
) | |
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_map = (depth_map - depth_min) / (depth_max - depth_min) | |
image = torch.cat([depth_map] * 3, dim=1) | |
image = image.permute(0, 2, 3, 1).cpu().numpy()[0] | |
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) | |
return image | |
def get_depth_edge_array(depth_img_path): | |
depth_image_tmp = Image.fromarray(depth_img_path) | |
# get depth map | |
depth_map = get_depth_map(depth_image_tmp) | |
return depth_map | |
def load_example_controlnet(): | |
folder_path = 'assets/ref' | |
examples = [] | |
for filename in os.listdir(folder_path): | |
if filename.endswith((".png")): | |
image_path = os.path.join(folder_path, filename) | |
image_name = os.path.basename(image_path) | |
style_name = image_name.split('_')[1] | |
config_path = './config/{}.json'.format(style_name) | |
config = parse_config(config_path) | |
inf_object_name = config["inference_info"]["inf_object_list"][0] | |
canny_path = './assets/depth_dir/gundam.png' | |
image_info = [image_path, canny_path, style_name, "", 1, 0.5, 50] # empty text | |
examples.append(image_info) | |
return examples | |
def controlnet_fn(image_path, depth_image_path, style_name, content_text, output_number, controlnet_scale=0.5, diffusion_step=50): | |
""" | |
:param style_name: ์ด๋ค json ํ์ผ ๋ถ๋ฅผ๊ฑฐ๋ ? | |
:param content_text: ์ด๋ค ์ฝํ ์ธ ๋ก ๋ณํ๋ฅผ ์ํ๋ ? | |
:param output_number: ๋ช๊ฐ ์์ฑํ ๊ฑฐ๋ ? | |
:return: | |
""" | |
config_path = './config/{}.json'.format(style_name) | |
config = parse_config(config_path) | |
inf_object = content_text | |
inf_seeds = [randint(0, 10**10) for _ in range(int(output_number))] | |
# inf_seeds = [i for i in range(int(output_number))] | |
activate_layer_indices_list = config['inference_info']['activate_layer_indices_list'] | |
activate_step_indices_list = config['inference_info']['activate_step_indices_list'] | |
ref_seed = config['reference_info']['ref_seeds'][0] | |
attn_map_save_steps = config['inference_info']['attn_map_save_steps'] | |
guidance_scale = config['guidance_scale'] | |
use_inf_negative_prompt = config['inference_info']['use_negative_prompt'] | |
style_name = config["style_name_list"][0] | |
ref_object = config["reference_info"]["ref_object_list"][0] | |
ref_with_style_description = config['reference_info']['with_style_description'] | |
inf_with_style_description = config['inference_info']['with_style_description'] | |
use_shared_attention = config['inference_info']['use_shared_attention'] | |
adain_queries = config['inference_info']['adain_queries'] | |
adain_keys = config['inference_info']['adain_keys'] | |
adain_values = config['inference_info']['adain_values'] | |
use_advanced_sampling = config['inference_info']['use_advanced_sampling'] | |
#get canny edge array | |
depth_image = get_depth_edge_array(depth_image_path) | |
style_description_pos, style_description_neg = STYLE_DESCRIPTION_DICT[style_name][0], \ | |
STYLE_DESCRIPTION_DICT[style_name][1] | |
# Inference | |
with torch.inference_mode(): | |
grid = None | |
if ref_with_style_description: | |
ref_prompt = style_description_pos.replace("{object}", ref_object) | |
else: | |
ref_prompt = ref_object | |
if inf_with_style_description: | |
inf_prompt = style_description_pos.replace("{object}", inf_object) | |
else: | |
inf_prompt = inf_object | |
for activate_layer_indices in activate_layer_indices_list: | |
for activate_step_indices in activate_step_indices_list: | |
str_activate_layer, str_activate_step = model_controlnet.activate_layer( | |
activate_layer_indices=activate_layer_indices, | |
attn_map_save_steps=attn_map_save_steps, | |
activate_step_indices=activate_step_indices, | |
use_shared_attention=use_shared_attention, | |
adain_queries=adain_queries, | |
adain_keys=adain_keys, | |
adain_values=adain_values, | |
) | |
# ref_latent = model_controlnet.get_init_latent(ref_seed, precomputed_path=None) | |
ref_latent = init_latent(model_controlnet, device_name=device, dtype=torch_dtype, seed=ref_seed) | |
latents = [ref_latent] | |
for inf_seed in inf_seeds: | |
# latents.append(model_controlnet.get_init_latent(inf_seed, precomputed_path=None)) | |
inf_latent = init_latent(model_controlnet, device_name=device, dtype=torch_dtype, seed=inf_seed) | |
latents.append(inf_latent) | |
latents = torch.cat(latents, dim=0) | |
latents.to(device) | |
images = model_controlnet.generated_ve_inference( | |
prompt=ref_prompt, | |
negative_prompt=style_description_neg, | |
guidance_scale=guidance_scale, | |
num_inference_steps=diffusion_step, | |
controlnet_conditioning_scale=controlnet_scale, | |
latents=latents, | |
num_images_per_prompt=len(inf_seeds) + 1, | |
target_prompt=inf_prompt, | |
image=depth_image, | |
use_inf_negative_prompt=use_inf_negative_prompt, | |
use_advanced_sampling=use_advanced_sampling | |
)[0][1:] | |
n_row = 1 | |
n_col = len(inf_seeds) # ์๋ณธ์ถ๊ฐํ๋ ค๋ฉด + 1 | |
# make grid | |
grid = create_image_grid(images, n_row, n_col) | |
torch.cuda.empty_cache() | |
return grid | |
description_md = """ | |
### We introduce `Visual Style Prompting`, which reflects the style of a reference image to the images generated by a pretrained text-to-image diffusion model without finetuning or optimization (e.g., Figure N). | |
### ๐ [[Paper](https://arxiv.org/abs/2402.12974)] | โจ [[Project page](https://curryjung.github.io/VisualStylePrompt)] | โจ [[Code](https://github.com/naver-ai/Visual-Style-Prompting)] | |
### ๐ฅ [[Default ver](https://huggingface.co/spaces/naver-ai/VisualStylePrompting)] | |
--- | |
### Visual Style Prompting also works on `ControlNet` which specifies the shape of the results by depthmap or keypoints. | |
### To try out our demo with ControlNet, | |
1. Upload an `image for depth control`. An off-the-shelf model will produce the depthmap from it. | |
2. Choose `ControlNet scale` which determines the alignment to the depthmap. | |
3. Choose a `style reference` from the collection of images below. | |
4. Enter the `text prompt`. (`Empty text` is okay, but a depthmap description helps.) | |
5. Choose the `number of outputs`. | |
### To achieve faster results, we recommend lowering the diffusion steps to 30. | |
### Enjoy ! ๐ | |
""" | |
iface_controlnet = gr.Interface( | |
fn=controlnet_fn, | |
inputs=[ | |
gr.components.Image(label="Style image"), | |
gr.components.Image(label="Depth image"), | |
gr.components.Textbox(label='Style name', visible=False), | |
gr.components.Textbox(label="Text prompt", placeholder="Enter Text prompt"), | |
gr.components.Textbox(label="Number of outputs", placeholder="Enter Number of outputs"), | |
gr.components.Slider(minimum=0.5, maximum=10, step=0.5, value=0.5, label="Controlnet scale"), | |
gr.components.Slider(minimum=10, maximum=50, step=10, value=50, label="Diffusion steps") | |
], | |
outputs=gr.components.Image(type="pil"), | |
title="๐จ Visual Style Prompting (w/ ControlNet)", | |
description=description_md, | |
examples=load_example_controlnet(), | |
) | |
iface_controlnet.launch(debug=True) |