|
import os |
|
import re |
|
from abc import ABC, abstractmethod |
|
|
|
from camel.agents import RolePlaying |
|
from camel.messages import ChatMessage |
|
from camel.typing import TaskType, ModelType |
|
from chatdev.chat_env import ChatEnv |
|
from chatdev.statistics import get_info |
|
from chatdev.utils import log_and_print_online, log_arguments |
|
|
|
|
|
class Phase(ABC): |
|
|
|
def __init__(self, |
|
assistant_role_name, |
|
user_role_name, |
|
phase_prompt, |
|
role_prompts, |
|
phase_name, |
|
model_type, |
|
log_filepath): |
|
""" |
|
|
|
Args: |
|
assistant_role_name: who receives chat in a phase |
|
user_role_name: who starts the chat in a phase |
|
phase_prompt: prompt of this phase |
|
role_prompts: prompts of all roles |
|
phase_name: name of this phase |
|
""" |
|
self.seminar_conclusion = None |
|
self.assistant_role_name = assistant_role_name |
|
self.user_role_name = user_role_name |
|
self.phase_prompt = phase_prompt |
|
self.phase_env = dict() |
|
self.phase_name = phase_name |
|
self.assistant_role_prompt = role_prompts[assistant_role_name] |
|
self.user_role_prompt = role_prompts[user_role_name] |
|
self.ceo_prompt = role_prompts["Chief Executive Officer"] |
|
self.counselor_prompt = role_prompts["Counselor"] |
|
self.timeout_seconds = 1.0 |
|
self.max_retries = 3 |
|
self.reflection_prompt = """Here is a conversation between two roles: {conversations} {question}""" |
|
self.model_type = model_type |
|
self.log_filepath = log_filepath |
|
|
|
@log_arguments |
|
def chatting( |
|
self, |
|
chat_env, |
|
task_prompt: str, |
|
assistant_role_name: str, |
|
user_role_name: str, |
|
phase_prompt: str, |
|
phase_name: str, |
|
assistant_role_prompt: str, |
|
user_role_prompt: str, |
|
task_type=TaskType.CHATDEV, |
|
need_reflect=False, |
|
with_task_specify=False, |
|
model_type=ModelType.GPT_3_5_TURBO, |
|
placeholders=None, |
|
chat_turn_limit=10 |
|
) -> str: |
|
""" |
|
|
|
Args: |
|
chat_env: global chatchain environment TODO: only for employee detection, can be deleted |
|
task_prompt: user query prompt for building the software |
|
assistant_role_name: who receives the chat |
|
user_role_name: who starts the chat |
|
phase_prompt: prompt of the phase |
|
phase_name: name of the phase |
|
assistant_role_prompt: prompt of assistant role |
|
user_role_prompt: prompt of user role |
|
task_type: task type |
|
need_reflect: flag for checking reflection |
|
with_task_specify: with task specify |
|
model_type: model type |
|
placeholders: placeholders for phase environment to generate phase prompt |
|
chat_turn_limit: turn limits in each chat |
|
|
|
Returns: |
|
|
|
""" |
|
|
|
if placeholders is None: |
|
placeholders = {} |
|
assert 1 <= chat_turn_limit <= 100 |
|
|
|
if not chat_env.exist_employee(assistant_role_name): |
|
raise ValueError(f"{assistant_role_name} not recruited in ChatEnv.") |
|
if not chat_env.exist_employee(user_role_name): |
|
raise ValueError(f"{user_role_name} not recruited in ChatEnv.") |
|
|
|
|
|
role_play_session = RolePlaying( |
|
assistant_role_name=assistant_role_name, |
|
user_role_name=user_role_name, |
|
assistant_role_prompt=assistant_role_prompt, |
|
user_role_prompt=user_role_prompt, |
|
task_prompt=task_prompt, |
|
task_type=task_type, |
|
with_task_specify=with_task_specify, |
|
model_type=model_type, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
_, input_user_msg = role_play_session.init_chat(None, placeholders, phase_prompt) |
|
seminar_conclusion = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(chat_turn_limit): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assistant_response, user_response = role_play_session.step(input_user_msg, chat_turn_limit == 1) |
|
|
|
conversation_meta = "**" + assistant_role_name + "<->" + user_role_name + " on : " + str( |
|
phase_name) + ", turn " + str(i) + "**\n\n" |
|
|
|
|
|
if isinstance(assistant_response.msg, ChatMessage): |
|
|
|
log_and_print_online(role_play_session.assistant_agent.role_name, |
|
conversation_meta + "[" + role_play_session.user_agent.system_message.content + "]\n\n" + assistant_response.msg.content) |
|
if role_play_session.assistant_agent.info: |
|
seminar_conclusion = assistant_response.msg.content |
|
break |
|
if assistant_response.terminated: |
|
break |
|
|
|
if isinstance(user_response.msg, ChatMessage): |
|
|
|
log_and_print_online(role_play_session.user_agent.role_name, |
|
conversation_meta + "[" + role_play_session.assistant_agent.system_message.content + "]\n\n" + user_response.msg.content) |
|
if role_play_session.user_agent.info: |
|
seminar_conclusion = user_response.msg.content |
|
break |
|
if user_response.terminated: |
|
break |
|
|
|
|
|
if chat_turn_limit > 1 and isinstance(user_response.msg, ChatMessage): |
|
input_user_msg = user_response.msg |
|
else: |
|
break |
|
|
|
|
|
if need_reflect: |
|
if seminar_conclusion in [None, ""]: |
|
seminar_conclusion = "<INFO> " + self.self_reflection(task_prompt, role_play_session, phase_name, |
|
chat_env) |
|
if "recruiting" in phase_name: |
|
if "Yes".lower() not in seminar_conclusion.lower() and "No".lower() not in seminar_conclusion.lower(): |
|
seminar_conclusion = "<INFO> " + self.self_reflection(task_prompt, role_play_session, |
|
phase_name, |
|
chat_env) |
|
elif seminar_conclusion in [None, ""]: |
|
seminar_conclusion = "<INFO> " + self.self_reflection(task_prompt, role_play_session, phase_name, |
|
chat_env) |
|
else: |
|
seminar_conclusion = assistant_response.msg.content |
|
|
|
log_and_print_online("**[Seminar Conclusion]**:\n\n {}".format(seminar_conclusion)) |
|
seminar_conclusion = seminar_conclusion.split("<INFO>")[-1] |
|
return seminar_conclusion |
|
|
|
def self_reflection(self, |
|
task_prompt: str, |
|
role_play_session: RolePlaying, |
|
phase_name: str, |
|
chat_env: ChatEnv) -> str: |
|
""" |
|
|
|
Args: |
|
task_prompt: user query prompt for building the software |
|
role_play_session: role play session from the chat phase which needs reflection |
|
phase_name: name of the chat phase which needs reflection |
|
chat_env: global chatchain environment |
|
|
|
Returns: |
|
reflected_content: str, reflected results |
|
|
|
""" |
|
messages = role_play_session.assistant_agent.stored_messages if len( |
|
role_play_session.assistant_agent.stored_messages) >= len( |
|
role_play_session.user_agent.stored_messages) else role_play_session.user_agent.stored_messages |
|
messages = ["{}: {}".format(message.role_name, message.content.replace("\n\n", "\n")) for message in messages] |
|
messages = "\n\n".join(messages) |
|
|
|
if "recruiting" in phase_name: |
|
question = """Answer their final discussed conclusion (Yes or No) in the discussion without any other words, e.g., "Yes" """ |
|
elif phase_name == "DemandAnalysis": |
|
question = """Answer their final product modality in the discussion without any other words, e.g., "PowerPoint" """ |
|
|
|
|
|
elif phase_name == "LanguageChoose": |
|
question = """Conclude the programming language being discussed for software development, in the format: "*" where '*' represents a programming language." """ |
|
elif phase_name == "EnvironmentDoc": |
|
question = """According to the codes and file format listed above, write a requirements.txt file to specify the dependencies or packages required for the project to run properly." """ |
|
else: |
|
raise ValueError(f"Reflection of phase {phase_name}: Not Assigned.") |
|
|
|
|
|
|
|
reflected_content = \ |
|
self.chatting(chat_env=chat_env, |
|
task_prompt=task_prompt, |
|
assistant_role_name="Chief Executive Officer", |
|
user_role_name="Counselor", |
|
phase_prompt=self.reflection_prompt, |
|
phase_name="Reflection", |
|
assistant_role_prompt=self.ceo_prompt, |
|
user_role_prompt=self.counselor_prompt, |
|
placeholders={"conversations": messages, "question": question}, |
|
need_reflect=False, |
|
chat_turn_limit=1, |
|
model_type=self.model_type) |
|
|
|
if "recruiting" in phase_name: |
|
if "Yes".lower() in reflected_content.lower(): |
|
return "Yes" |
|
return "No" |
|
else: |
|
return reflected_content |
|
|
|
@abstractmethod |
|
def update_phase_env(self, chat_env): |
|
""" |
|
update self.phase_env (if needed) using chat_env, then the chatting will use self.phase_env to follow the context and fill placeholders in phase prompt |
|
must be implemented in customized phase |
|
the usual format is just like: |
|
``` |
|
self.phase_env.update({key:chat_env[key]}) |
|
``` |
|
Args: |
|
chat_env: global chat chain environment |
|
|
|
Returns: None |
|
|
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
""" |
|
update chan_env based on the results of self.execute, which is self.seminar_conclusion |
|
must be implemented in customized phase |
|
the usual format is just like: |
|
``` |
|
chat_env.xxx = some_func_for_postprocess(self.seminar_conclusion) |
|
``` |
|
Args: |
|
chat_env:global chat chain environment |
|
|
|
Returns: |
|
chat_env: updated global chat chain environment |
|
|
|
""" |
|
pass |
|
|
|
def execute(self, chat_env, chat_turn_limit, need_reflect) -> ChatEnv: |
|
""" |
|
execute the chatting in this phase |
|
1. receive information from environment: update the phase environment from global environment |
|
2. execute the chatting |
|
3. change the environment: update the global environment using the conclusion |
|
Args: |
|
chat_env: global chat chain environment |
|
chat_turn_limit: turn limit in each chat |
|
need_reflect: flag for reflection |
|
|
|
Returns: |
|
chat_env: updated global chat chain environment using the conclusion from this phase execution |
|
|
|
""" |
|
self.update_phase_env(chat_env) |
|
self.seminar_conclusion = \ |
|
self.chatting(chat_env=chat_env, |
|
task_prompt=chat_env.env_dict['task_prompt'], |
|
need_reflect=need_reflect, |
|
assistant_role_name=self.assistant_role_name, |
|
user_role_name=self.user_role_name, |
|
phase_prompt=self.phase_prompt, |
|
phase_name=self.phase_name, |
|
assistant_role_prompt=self.assistant_role_prompt, |
|
user_role_prompt=self.user_role_prompt, |
|
chat_turn_limit=chat_turn_limit, |
|
placeholders=self.phase_env, |
|
model_type=self.model_type) |
|
chat_env = self.update_chat_env(chat_env) |
|
return chat_env |
|
|
|
|
|
class DemandAnalysis(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
pass |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
if len(self.seminar_conclusion) > 0: |
|
chat_env.env_dict['modality'] = self.seminar_conclusion.split("<INFO>")[-1].lower().replace(".", "").strip() |
|
return chat_env |
|
|
|
|
|
class LanguageChoose(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
self.phase_env.update({"task": chat_env.env_dict['task_prompt'], |
|
"modality": chat_env.env_dict['modality'], |
|
"ideas": chat_env.env_dict['ideas']}) |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
if len(self.seminar_conclusion) > 0 and "<INFO>" in self.seminar_conclusion: |
|
chat_env.env_dict['language'] = self.seminar_conclusion.split("<INFO>")[-1].lower().replace(".", "").strip() |
|
elif len(self.seminar_conclusion) > 0: |
|
chat_env.env_dict['language'] = self.seminar_conclusion |
|
else: |
|
chat_env.env_dict['language'] = "Python" |
|
return chat_env |
|
|
|
|
|
class Coding(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
gui = "" if not chat_env.config.gui_design \ |
|
else "The software should be equipped with graphical user interface (GUI) so that user can visually and graphically use it; so you must choose a GUI framework (e.g., in Python, you can implement GUI via tkinter, Pygame, Flexx, PyGUI, etc,)." |
|
self.phase_env.update({"task": chat_env.env_dict['task_prompt'], |
|
"modality": chat_env.env_dict['modality'], |
|
"ideas": chat_env.env_dict['ideas'], |
|
"language": chat_env.env_dict['language'], |
|
"gui": gui}) |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
chat_env.update_codes(self.seminar_conclusion) |
|
if len(chat_env.codes.codebooks.keys()) == 0: |
|
raise ValueError("No Valid Codes.") |
|
chat_env.rewrite_codes() |
|
log_and_print_online("**[Software Info]**:\n\n {}".format(get_info(chat_env.env_dict['directory'],self.log_filepath))) |
|
return chat_env |
|
|
|
|
|
class ArtDesign(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
self.phase_env = {"task": chat_env.env_dict['task_prompt'], |
|
"language": chat_env.env_dict['language'], |
|
"codes": chat_env.get_codes()} |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
chat_env.proposed_images = chat_env.get_proposed_images_from_message(self.seminar_conclusion) |
|
log_and_print_online("**[Software Info]**:\n\n {}".format(get_info(chat_env.env_dict['directory'],self.log_filepath))) |
|
return chat_env |
|
|
|
|
|
class ArtIntegration(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
self.phase_env = {"task": chat_env.env_dict['task_prompt'], |
|
"language": chat_env.env_dict['language'], |
|
"codes": chat_env.get_codes(), |
|
"images": "\n".join( |
|
["{}: {}".format(filename, chat_env.proposed_images[filename]) for |
|
filename in sorted(list(chat_env.proposed_images.keys()))])} |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
chat_env.update_codes(self.seminar_conclusion) |
|
chat_env.rewrite_codes() |
|
|
|
log_and_print_online("**[Software Info]**:\n\n {}".format(get_info(chat_env.env_dict['directory'],self.log_filepath))) |
|
return chat_env |
|
|
|
|
|
class CodeComplete(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
self.phase_env.update({"task": chat_env.env_dict['task_prompt'], |
|
"modality": chat_env.env_dict['modality'], |
|
"ideas": chat_env.env_dict['ideas'], |
|
"language": chat_env.env_dict['language'], |
|
"codes": chat_env.get_codes(), |
|
"unimplemented_file": ""}) |
|
unimplemented_file = "" |
|
for filename in self.phase_env['pyfiles']: |
|
code_content = open(os.path.join(chat_env.env_dict['directory'], filename)).read() |
|
lines = [line.strip() for line in code_content.split("\n") if line.strip() == "pass"] |
|
if len(lines) > 0 and self.phase_env['num_tried'][filename] < self.phase_env['max_num_implement']: |
|
unimplemented_file = filename |
|
break |
|
self.phase_env['num_tried'][unimplemented_file] += 1 |
|
self.phase_env['unimplemented_file'] = unimplemented_file |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
chat_env.update_codes(self.seminar_conclusion) |
|
if len(chat_env.codes.codebooks.keys()) == 0: |
|
raise ValueError("No Valid Codes.") |
|
chat_env.rewrite_codes() |
|
log_and_print_online("**[Software Info]**:\n\n {}".format(get_info(chat_env.env_dict['directory'],self.log_filepath))) |
|
return chat_env |
|
|
|
|
|
class CodeReviewComment(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
self.phase_env.update( |
|
{"task": chat_env.env_dict['task_prompt'], |
|
"modality": chat_env.env_dict['modality'], |
|
"ideas": chat_env.env_dict['ideas'], |
|
"language": chat_env.env_dict['language'], |
|
"codes": chat_env.get_codes(), |
|
"images": ", ".join(chat_env.incorporated_images)}) |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
chat_env.env_dict['review_comments'] = self.seminar_conclusion |
|
return chat_env |
|
|
|
|
|
class CodeReviewModification(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
self.phase_env.update({"task": chat_env.env_dict['task_prompt'], |
|
"modality": chat_env.env_dict['modality'], |
|
"ideas": chat_env.env_dict['ideas'], |
|
"language": chat_env.env_dict['language'], |
|
"codes": chat_env.get_codes(), |
|
"comments": chat_env.env_dict['review_comments']}) |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
if "```".lower() in self.seminar_conclusion.lower(): |
|
chat_env.update_codes(self.seminar_conclusion) |
|
chat_env.rewrite_codes() |
|
log_and_print_online("**[Software Info]**:\n\n {}".format(get_info(chat_env.env_dict['directory'],self.log_filepath))) |
|
self.phase_env['modification_conclusion'] = self.seminar_conclusion |
|
return chat_env |
|
|
|
|
|
class CodeReviewHuman(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
print( |
|
f"You can participate in the development of the software {chat_env.env_dict['task_prompt']}. Please input your feedback. (\"End\" to quit the involvement.)") |
|
provided_comments = input() |
|
self.phase_env.update({"task": chat_env.env_dict['task_prompt'], |
|
"modality": chat_env.env_dict['modality'], |
|
"ideas": chat_env.env_dict['ideas'], |
|
"language": chat_env.env_dict['language'], |
|
"codes": chat_env.get_codes(), |
|
"comments": provided_comments}) |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
if "```".lower() in self.seminar_conclusion.lower(): |
|
chat_env.update_codes(self.seminar_conclusion) |
|
chat_env.rewrite_codes() |
|
log_and_print_online("**[Software Info]**:\n\n {}".format(get_info(chat_env.env_dict['directory'],self.log_filepath))) |
|
return chat_env |
|
|
|
|
|
class TestErrorSummary(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
chat_env.generate_images_from_codes() |
|
(exist_bugs_flag, test_reports) = chat_env.exist_bugs() |
|
self.phase_env.update({"task": chat_env.env_dict['task_prompt'], |
|
"modality": chat_env.env_dict['modality'], |
|
"ideas": chat_env.env_dict['ideas'], |
|
"language": chat_env.env_dict['language'], |
|
"codes": chat_env.get_codes(), |
|
"test_reports": test_reports, |
|
"exist_bugs_flag": exist_bugs_flag}) |
|
log_and_print_online("**[Test Reports]**:\n\n{}".format(test_reports)) |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
chat_env.env_dict['error_summary'] = self.seminar_conclusion |
|
chat_env.env_dict['test_reports'] = self.phase_env['test_reports'] |
|
|
|
return chat_env |
|
|
|
def execute(self, chat_env, chat_turn_limit, need_reflect) -> ChatEnv: |
|
self.update_phase_env(chat_env) |
|
if "ModuleNotFoundError" in self.phase_env['test_reports']: |
|
chat_env.fix_module_not_found_error(self.phase_env['test_reports']) |
|
log_and_print_online( |
|
f"Software Test Engineer found ModuleNotFoundError:\n{self.phase_env['test_reports']}\n") |
|
pip_install_content = "" |
|
for match in re.finditer(r"No module named '(\S+)'", self.phase_env['test_reports'], re.DOTALL): |
|
module = match.group(1) |
|
pip_install_content += "{}\n```{}\n{}\n```\n".format("cmd", "bash", f"pip install {module}") |
|
log_and_print_online(f"Programmer resolve ModuleNotFoundError by:\n{pip_install_content}\n") |
|
self.seminar_conclusion = "nothing need to do" |
|
else: |
|
self.seminar_conclusion = \ |
|
self.chatting(chat_env=chat_env, |
|
task_prompt=chat_env.env_dict['task_prompt'], |
|
need_reflect=need_reflect, |
|
assistant_role_name=self.assistant_role_name, |
|
user_role_name=self.user_role_name, |
|
phase_prompt=self.phase_prompt, |
|
phase_name=self.phase_name, |
|
assistant_role_prompt=self.assistant_role_prompt, |
|
user_role_prompt=self.user_role_prompt, |
|
chat_turn_limit=chat_turn_limit, |
|
placeholders=self.phase_env) |
|
chat_env = self.update_chat_env(chat_env) |
|
return chat_env |
|
|
|
|
|
class TestModification(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
self.phase_env.update({"task": chat_env.env_dict['task_prompt'], |
|
"modality": chat_env.env_dict['modality'], |
|
"ideas": chat_env.env_dict['ideas'], |
|
"language": chat_env.env_dict['language'], |
|
"test_reports": chat_env.env_dict['test_reports'], |
|
"error_summary": chat_env.env_dict['error_summary'], |
|
"codes": chat_env.get_codes() |
|
}) |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
if "```".lower() in self.seminar_conclusion.lower(): |
|
chat_env.update_codes(self.seminar_conclusion) |
|
chat_env.rewrite_codes() |
|
log_and_print_online("**[Software Info]**:\n\n {}".format(get_info(chat_env.env_dict['directory'],self.log_filepath))) |
|
return chat_env |
|
|
|
|
|
class EnvironmentDoc(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
self.phase_env.update({"task": chat_env.env_dict['task_prompt'], |
|
"modality": chat_env.env_dict['modality'], |
|
"ideas": chat_env.env_dict['ideas'], |
|
"language": chat_env.env_dict['language'], |
|
"codes": chat_env.get_codes()}) |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
chat_env._update_requirements(self.seminar_conclusion) |
|
chat_env.rewrite_requirements() |
|
log_and_print_online("**[Software Info]**:\n\n {}".format(get_info(chat_env.env_dict['directory'],self.log_filepath))) |
|
return chat_env |
|
|
|
|
|
class Manual(Phase): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def update_phase_env(self, chat_env): |
|
self.phase_env.update({"task": chat_env.env_dict['task_prompt'], |
|
"modality": chat_env.env_dict['modality'], |
|
"ideas": chat_env.env_dict['ideas'], |
|
"language": chat_env.env_dict['language'], |
|
"codes": chat_env.get_codes(), |
|
"requirements": chat_env.get_requirements()}) |
|
|
|
def update_chat_env(self, chat_env) -> ChatEnv: |
|
chat_env._update_manuals(self.seminar_conclusion) |
|
chat_env.rewrite_manuals() |
|
return chat_env |
|
|