|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import random |
|
import warnings |
|
from typing import Any, Dict, Optional, Sequence |
|
|
|
from colorama import Fore |
|
|
|
from camel.agents import ChatAgent |
|
from camel.messages import ChatMessage, SystemMessage |
|
from camel.typing import ModelType |
|
from camel.utils import get_first_int, print_text_animated |
|
|
|
|
|
class CriticAgent(ChatAgent): |
|
r"""A class for the critic agent that assists in selecting an option. |
|
|
|
Args: |
|
system_message (SystemMessage): The system message for the critic |
|
agent. |
|
model (ModelType, optional): The LLM model to use for generating |
|
responses. (default :obj:`ModelType.GPT_3_5_TURBO`) |
|
model_config (Any, optional): Configuration options for the LLM model. |
|
(default: :obj:`None`) |
|
message_window_size (int, optional): The maximum number of previous |
|
messages to include in the context window. If `None`, no windowing |
|
is performed. (default: :obj:`6`) |
|
retry_attempts (int, optional): The number of retry attempts if the |
|
critic fails to return a valid option. (default: :obj:`2`) |
|
verbose (bool, optional): Whether to print the critic's messages. |
|
logger_color (Any): The color of the menu options displayed to the |
|
user. (default: :obj:`Fore.MAGENTA`) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
system_message: SystemMessage, |
|
model: ModelType = ModelType.GPT_3_5_TURBO, |
|
model_config: Optional[Any] = None, |
|
message_window_size: int = 6, |
|
retry_attempts: int = 2, |
|
verbose: bool = False, |
|
logger_color: Any = Fore.MAGENTA, |
|
) -> None: |
|
super().__init__(system_message, model, model_config, |
|
message_window_size) |
|
self.options_dict: Dict[str, str] = dict() |
|
self.retry_attempts = retry_attempts |
|
self.verbose = verbose |
|
self.logger_color = logger_color |
|
|
|
def flatten_options(self, messages: Sequence[ChatMessage]) -> str: |
|
r"""Flattens the options to the critic. |
|
|
|
Args: |
|
messages (Sequence[ChatMessage]): A list of `ChatMessage` objects. |
|
|
|
Returns: |
|
str: A string containing the flattened options to the critic. |
|
""" |
|
options = [message.content for message in messages] |
|
flatten_options = ( |
|
f"> Proposals from " |
|
f"{messages[0].role_name} ({messages[0].role_type}). " |
|
"Please choose an option:\n") |
|
for index, option in enumerate(options): |
|
flatten_options += f"Option {index + 1}:\n{option}\n\n" |
|
self.options_dict[str(index + 1)] = option |
|
format = ( |
|
f"Please first enter your choice ([1-{len(self.options_dict)}]) " |
|
"and then your explanation and comparison: ") |
|
return flatten_options + format |
|
|
|
def get_option(self, input_message: ChatMessage) -> str: |
|
r"""Gets the option selected by the critic. |
|
|
|
Args: |
|
input_message (ChatMessage): A `ChatMessage` object representing |
|
the input message. |
|
|
|
Returns: |
|
str: The option selected by the critic. |
|
""" |
|
|
|
msg_content = input_message.content |
|
i = 0 |
|
while i < self.retry_attempts: |
|
critic_response = super().step(input_message) |
|
|
|
if critic_response.msgs is None or len(critic_response.msgs) == 0: |
|
raise RuntimeError("Got None critic messages.") |
|
if critic_response.terminated: |
|
raise RuntimeError("Critic step failed.") |
|
|
|
critic_msg = critic_response.msgs[0] |
|
self.update_messages(critic_msg) |
|
if self.verbose: |
|
print_text_animated(self.logger_color + "\n> Critic response: " |
|
f"\x1b[3m{critic_msg.content}\x1b[0m\n") |
|
choice = self.parse_critic(critic_msg) |
|
|
|
if choice in self.options_dict: |
|
return self.options_dict[choice] |
|
else: |
|
input_message = ChatMessage( |
|
role_name=input_message.role_name, |
|
role_type=input_message.role_type, |
|
meta_dict=input_message.meta_dict, |
|
role=input_message.role, |
|
content="> Invalid choice. Please choose again.\n" + |
|
msg_content, |
|
) |
|
i += 1 |
|
warnings.warn("Critic failed to get a valid option. " |
|
f"After {self.retry_attempts} attempts. " |
|
"Returning a random option.") |
|
return random.choice(list(self.options_dict.values())) |
|
|
|
def parse_critic(self, critic_msg: ChatMessage) -> Optional[str]: |
|
r"""Parses the critic's message and extracts the choice. |
|
|
|
Args: |
|
critic_msg (ChatMessage): A `ChatMessage` object representing the |
|
critic's response. |
|
|
|
Returns: |
|
Optional[str]: The critic's choice as a string, or None if the |
|
message could not be parsed. |
|
""" |
|
choice = str(get_first_int(critic_msg.content)) |
|
return choice |
|
|
|
def step(self, messages: Sequence[ChatMessage]) -> ChatMessage: |
|
r"""Performs one step of the conversation by flattening options to the |
|
critic, getting the option, and parsing the choice. |
|
|
|
Args: |
|
messages (Sequence[ChatMessage]): A list of ChatMessage objects. |
|
|
|
Returns: |
|
ChatMessage: A `ChatMessage` object representing the critic's |
|
choice. |
|
""" |
|
meta_chat_message = ChatMessage( |
|
role_name=messages[0].role_name, |
|
role_type=messages[0].role_type, |
|
meta_dict=messages[0].meta_dict, |
|
role=messages[0].role, |
|
content="", |
|
) |
|
|
|
flatten_options = self.flatten_options(messages) |
|
if self.verbose: |
|
print_text_animated(self.logger_color + |
|
f"\x1b[3m{flatten_options}\x1b[0m\n") |
|
input_msg = copy.deepcopy(meta_chat_message) |
|
input_msg.content = flatten_options |
|
|
|
option = self.get_option(input_msg.set_user_role_at_backend()) |
|
output_msg = copy.deepcopy(meta_chat_message) |
|
output_msg.content = option |
|
|
|
return output_msg |
|
|