|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
from typing import Any, Dict |
|
|
|
import openai |
|
import tiktoken |
|
|
|
from camel.typing import ModelType |
|
from chatdev.utils import log_and_print_online |
|
|
|
|
|
class ModelBackend(ABC): |
|
r"""Base class for different model backends. |
|
May be OpenAI API, a local LLM, a stub for unit tests, etc.""" |
|
|
|
@abstractmethod |
|
def run(self, *args, **kwargs) -> Dict[str, Any]: |
|
r"""Runs the query to the backend model. |
|
|
|
Raises: |
|
RuntimeError: if the return value from OpenAI API |
|
is not a dict that is expected. |
|
|
|
Returns: |
|
Dict[str, Any]: All backends must return a dict in OpenAI format. |
|
""" |
|
pass |
|
|
|
|
|
class OpenAIModel(ModelBackend): |
|
r"""OpenAI API in a unified ModelBackend interface.""" |
|
|
|
def __init__(self, model_type: ModelType, model_config_dict: Dict) -> None: |
|
super().__init__() |
|
self.model_type = model_type |
|
self.model_config_dict = model_config_dict |
|
|
|
def run(self, *args, **kwargs) -> Dict[str, Any]: |
|
string = "\n".join([message["content"] for message in kwargs["messages"]]) |
|
encoding = tiktoken.encoding_for_model(self.model_type.value) |
|
num_prompt_tokens = len(encoding.encode(string)) |
|
gap_between_send_receive = 50 |
|
num_prompt_tokens += gap_between_send_receive |
|
|
|
num_max_token_map = { |
|
"gpt-3.5-turbo": 4096, |
|
"gpt-3.5-turbo-16k": 16384, |
|
"gpt-3.5-turbo-0613": 4096, |
|
"gpt-3.5-turbo-16k-0613": 16384, |
|
"gpt-4": 8192, |
|
"gpt-4-0613": 8192, |
|
"gpt-4-32k": 32768, |
|
} |
|
num_max_token = num_max_token_map[self.model_type.value] |
|
num_max_completion_tokens = num_max_token - num_prompt_tokens |
|
self.model_config_dict['max_tokens'] = num_max_completion_tokens |
|
response = openai.ChatCompletion.create(*args, **kwargs, |
|
model=self.model_type.value, |
|
**self.model_config_dict) |
|
|
|
log_and_print_online( |
|
"**[OpenAI_Usage_Info Receive]**\nprompt_tokens: {}\ncompletion_tokens: {}\ntotal_tokens: {}\n".format( |
|
response["usage"]["prompt_tokens"], response["usage"]["completion_tokens"], |
|
response["usage"]["total_tokens"])) |
|
if not isinstance(response, Dict): |
|
raise RuntimeError("Unexpected return from OpenAI API") |
|
return response |
|
|
|
|
|
class StubModel(ModelBackend): |
|
r"""A dummy model used for unit tests.""" |
|
|
|
def __init__(self, *args, **kwargs) -> None: |
|
super().__init__() |
|
|
|
def run(self, *args, **kwargs) -> Dict[str, Any]: |
|
ARBITRARY_STRING = "Lorem Ipsum" |
|
|
|
return dict( |
|
id="stub_model_id", |
|
usage=dict(), |
|
choices=[ |
|
dict(finish_reason="stop", |
|
message=dict(content=ARBITRARY_STRING, role="assistant")) |
|
], |
|
) |
|
|
|
|
|
class ModelFactory: |
|
r"""Factory of backend models. |
|
|
|
Raises: |
|
ValueError: in case the provided model type is unknown. |
|
""" |
|
|
|
@staticmethod |
|
def create(model_type: ModelType, model_config_dict: Dict) -> ModelBackend: |
|
default_model_type = ModelType.GPT_3_5_TURBO |
|
|
|
if model_type in { |
|
ModelType.GPT_3_5_TURBO, ModelType.GPT_4, ModelType.GPT_4_32k, |
|
None |
|
}: |
|
model_class = OpenAIModel |
|
elif model_type == ModelType.STUB: |
|
model_class = StubModel |
|
else: |
|
raise ValueError("Unknown model") |
|
|
|
if model_type is None: |
|
model_type = default_model_type |
|
|
|
|
|
inst = model_class(model_type, model_config_dict) |
|
return inst |
|
|