temp-9384289 commited on
Commit
49010bb
1 Parent(s): b792f39
Files changed (2) hide show
  1. app.py +16 -3
  2. requirements.txt +1 -0
app.py CHANGED
@@ -13,6 +13,7 @@ from PIL import Image
13
  from huggingface_hub import from_pretrained_keras
14
  from math import sqrt, ceil
15
  import numpy as np
 
16
  import gradio as gr
17
 
18
  modelieo=[
@@ -196,11 +197,21 @@ def TextToImage(Prompt,inference_steps, model):
196
 
197
  return [ai_gen, another_one]
198
 
 
 
 
 
 
 
 
 
 
 
199
 
200
  with gr.Blocks() as app:
201
 
202
  interface = gr.Interface(fn=TextToImage,
203
- inputs=[gr.Textbox(show_label=True, label='How many seconds to hunt for copies?',), gr.Slider(1, 1000, label='Inference Steps', value=100, step=1), gr.Dropdown(modelieo)],
204
  outputs=gr.Gallery(label="Generated image", show_label=True, elem_id="gallery", columns=[2], rows=[1], object_fit="contain", height="auto"),
205
  # css="#output_image{width: 256px !important; height: 256px !important;}",
206
  title='Unconditional Image Generation',
@@ -209,11 +220,13 @@ with gr.Blocks() as app:
209
  "<hr>"
210
  "<h1><center>Do machine learing models store protected content?</center></h1>" +
211
  "<p><center><span style='color: red;'>Enter a time to hunt for copies (seconds), select a model, and hit submit!</center></p>" +
212
- "<p><center><strong>These image generation models will give you a 'bespoke' generation ❤ of an MNIST hand-drawn digit</p>" +
213
  "<p><center>then the program will search in training data (for <i>n</i> seconds) to find similar images: <a href='https://medium.com/@mygreatlearning/rmse-what-does-it-mean-2d446c0b1d0e'>RMSE<a>, lower is more similar</p>" +
214
- "<p><a href='https://nathanreitinger.umiacs.io'>@nathanReitinger<a></p>"
215
  )
216
 
 
 
217
  app.queue().launch()
218
  # interface.launch(share=True)
219
 
 
13
  from huggingface_hub import from_pretrained_keras
14
  from math import sqrt, ceil
15
  import numpy as np
16
+ import pandas as pd
17
  import gradio as gr
18
 
19
  modelieo=[
 
197
 
198
  return [ai_gen, another_one]
199
 
200
+ df = pd.DataFrame({
201
+ "Model" : ['MNIST-diffusion', 'MNIST-diffusion-oneImage', 'MNIST-GAN', 'MNIST-GAN-noDropout'],
202
+ "Class (Architecture)" : ['UNet2DModel', 'UNet2DModel', 'Sequential', 'Sequential'],
203
+ "Dataset Examples" : [60000, 1, 60000, 60000],
204
+ "Training Loops" : [300, 100000, 90000, 90000],
205
+ "Notes" : ['Similar architecture as Stable Diffusion, different training data', 'Toy model, purposed to store protected content', 'GANs are not as likely to store protected content', 'Attempting to increase copying']
206
+ })
207
+
208
+ # Applying style to highlight the maximum value in each row
209
+ styler = df#.style.highlight_max(color = 'lightgreen', axis = 0)
210
 
211
  with gr.Blocks() as app:
212
 
213
  interface = gr.Interface(fn=TextToImage,
214
+ inputs=[gr.Textbox(show_label=True, label='How many seconds to hunt for copies?',), gr.Slider(1, 1000, label='Inference Steps (leave unchanged for default, best is 1000 but it is slow!)', value=10, step=1), gr.Dropdown(modelieo)],
215
  outputs=gr.Gallery(label="Generated image", show_label=True, elem_id="gallery", columns=[2], rows=[1], object_fit="contain", height="auto"),
216
  # css="#output_image{width: 256px !important; height: 256px !important;}",
217
  title='Unconditional Image Generation',
 
220
  "<hr>"
221
  "<h1><center>Do machine learing models store protected content?</center></h1>" +
222
  "<p><center><span style='color: red;'>Enter a time to hunt for copies (seconds), select a model, and hit submit!</center></p>" +
223
+ "<p><center><strong>These image generation models will give you a 'bespoke' generation ❤ of an <a href='https://paperswithcode.com/dataset/mnist'>MNIST hand-drawn digit<a></p> " +
224
  "<p><center>then the program will search in training data (for <i>n</i> seconds) to find similar images: <a href='https://medium.com/@mygreatlearning/rmse-what-does-it-mean-2d446c0b1d0e'>RMSE<a>, lower is more similar</p>" +
225
+ "<p><a href='https://nathanreitinger.umiacs.io'>@nathanReitinger</a></p>"
226
  )
227
 
228
+ gr.Dataframe(styler)
229
+
230
  app.queue().launch()
231
  # interface.launch(share=True)
232
 
requirements.txt CHANGED
@@ -6,6 +6,7 @@ huggingface-hub==0.22.2
6
  image-similarity-measures==0.3.6
7
  matplotlib==3.8.4
8
  numpy==1.25.2
 
9
  pillow==10.3.0
10
  requests==2.31.0
11
  tensorflow==2.11.0
 
6
  image-similarity-measures==0.3.6
7
  matplotlib==3.8.4
8
  numpy==1.25.2
9
+ pandas==2.2.2
10
  pillow==10.3.0
11
  requests==2.31.0
12
  tensorflow==2.11.0