natfil's picture
Create app.py
69e0bd8 verified
raw
history blame
1.21 kB
import torch
import gradio as gr
from transformers import pipeline
#text_summary = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", torch_dtype=torch.bfloat16)
de_text_summary = pipeline("summarization", model="Shahm/bart-german")
#de_text_summary= pipeline("summarization", model="Joemgu/mlong-t5-large-sumstew")
def summary (input):
max_length = 1024 # adjust this value as needed
if len(input) > max_length:
input = input[:max_length]
output = de_text_summary(input)
return output[0]['summary_text']
gr.close_all()
# demo = gr.Interface(fn=summary, inputs="text",outputs="text")
demo = gr.Interface(fn=summary,
inputs=[gr.Textbox(label="Text eingeben, der zusammengefasst werden soll",lines=6)],
outputs=[gr.Textbox(label="Zusammengefasster Text",lines=4)],
title="Projekt 1: Text-Zusammenfassung",
description="DIESE ANWENDUNG WIRD ZUR ZUSAMMENFASSUNG DES TEXTES VERWENDET",
theme="default",
allow_flagging="never",
clear_btn="Bereinigen",
submit_btn="Übermitteln"
)
demo.launch()