nateraw's picture
🍻 cheers
f9158ff
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
use crate::{Entry, Queue, Token};
use crate::{GenerateRequest, PrefillToken};
use flume::r#async::RecvStream;
use flume::SendError;
use futures::future::try_join_all;
use futures::stream::StreamExt;
use nohash_hasher::IntMap;
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
};
use text_generation_client::{
Batch, ClientError, GeneratedText, Generation, PrefillTokens, ShardedClient,
};
use thiserror::Error;
use tokio::sync::{Notify, OwnedSemaphorePermit, Semaphore, TryAcquireError};
use tokio::time::Instant;
use tracing::{info_span, instrument, Instrument, Span};
/// Inference struct
#[derive(Clone)]
pub struct Infer {
/// Validation
validation: Validation,
/// Request queue
queue: Queue,
/// Shared state
shared: Arc<Shared>,
/// Inference limit
limit_concurrent_requests: Arc<Semaphore>,
}
/// Infer shared state
struct Shared {
/// Batching background Tokio task notifier
batching_task: Notify,
}
impl Infer {
#[allow(clippy::too_many_arguments)]
pub(crate) fn new(
client: ShardedClient,
validation: Validation,
waiting_served_ratio: f32,
max_batch_total_tokens: u32,
max_waiting_tokens: usize,
max_concurrent_requests: usize,
requires_padding: bool,
generation_health: Arc<AtomicBool>,
) -> Self {
// Infer shared state
let queue = Queue::new(requires_padding);
let shared = Arc::new(Shared {
batching_task: Notify::new(),
});
// Spawn batching background task that contains all the inference logic
tokio::spawn(batching_task(
client,
waiting_served_ratio,
max_batch_total_tokens,
max_waiting_tokens,
queue.clone(),
shared.clone(),
generation_health,
));
// Inference limit with a semaphore
let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));
Self {
validation,
queue,
shared,
limit_concurrent_requests: semaphore,
}
}
/// Add a new request to the queue and return a stream of InferStreamResponse
#[instrument(skip(self))]
pub(crate) async fn generate_stream(
&self,
request: GenerateRequest,
) -> Result<
(
OwnedSemaphorePermit,
RecvStream<Result<InferStreamResponse, InferError>>,
),
InferError,
> {
// Limit concurrent requests by acquiring a permit from the semaphore
let permit = self
.clone()
.limit_concurrent_requests
.try_acquire_owned()
.map_err(|err| {
metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
tracing::error!("{err}");
err
})?;
// Validate request
let valid_request = self.validation.validate(request).await.map_err(|err| {
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
tracing::error!("{err}");
err
})?;
// MPSC channel to communicate with the background batching task
let (response_tx, response_rx) = flume::unbounded();
// Append the request to the queue
self.queue.append(Entry {
request: valid_request,
response_tx,
span: Span::current(),
temp_span: None,
queue_time: Instant::now(),
batch_time: None,
});
// Notify the background task that we have a new entry in the queue that needs
// to be batched
self.shared.batching_task.notify_one();
// Return stream
Ok((permit, response_rx.into_stream()))
}
/// Add a new request to the queue and return a InferResponse
#[instrument(skip(self))]
pub(crate) async fn generate(
&self,
request: GenerateRequest,
) -> Result<InferResponse, InferError> {
// Create stream and keep semaphore permit as long as generate lives
let (_permit, mut stream) = self.generate_stream(request).await?;
// Return values
let mut result_prefill = Vec::new();
let mut result_tokens = Vec::new();
let mut result_generated_text = None;
let mut result_start = None;
let mut result_queued = None;
// Iterate on stream
while let Some(response) = stream.next().await {
match response? {
// Add prefill tokens
InferStreamResponse::Prefill(tokens) => {
// Create Token objects
// We do that here instead of in the Python code as Rust for loops are faster
result_prefill = tokens
.ids
.into_iter()
.zip(tokens.logprobs.into_iter())
.zip(tokens.texts.into_iter())
.map(|((id, logprob), text)| PrefillToken { id, text, logprob })
.collect();
}
// Push last token
InferStreamResponse::Token(token) => result_tokens.push(token),
// Final message
// Set return values
InferStreamResponse::End {
token,
generated_text,
start,
queued,
} => {
result_tokens.push(token);
result_generated_text = Some(generated_text);
result_start = Some(start);
result_queued = Some(queued)
}
}
}
// Check that we received a `InferStreamResponse::End` message
if let (Some(generated_text), Some(queued), Some(start)) =
(result_generated_text, result_queued, result_start)
{
Ok(InferResponse {
prefill: result_prefill,
tokens: result_tokens,
generated_text,
queued,
start,
})
} else {
let err = InferError::IncompleteGeneration;
metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
tracing::error!("{err}");
Err(err)
}
}
/// Add best_of new requests to the queue and return a InferResponse of the sequence with
/// the highest log probability per token
#[instrument(skip(self))]
pub(crate) async fn generate_best_of(
&self,
request: GenerateRequest,
best_of: usize,
) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
// validate best_of parameter separately
let best_of = self.validation.validate_best_of(best_of)?;
// create multiple generate requests
let mut infer_responses: Vec<InferResponse> =
try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;
// get the sequence with the highest log probability per token
let mut max_index = 0;
let mut max_logprob: f32 = f32::MIN;
for (i, response) in infer_responses.iter().enumerate() {
// mean logprobs of the generated tokens
let sequence_logprob = response
.tokens
.iter()
.map(|token| token.logprob)
.sum::<f32>()
/ response.tokens.len() as f32;
// set best sequence
if sequence_logprob > max_logprob {
max_index = i;
max_logprob = sequence_logprob;
}
}
let best_response = infer_responses.remove(max_index);
Ok((best_response, infer_responses))
}
}
/// Batching logic
/// Will be launched in a background Tokio task
///
/// Batches requests and sends them to the inference server
async fn batching_task(
mut client: ShardedClient,
waiting_served_ratio: f32,
max_batch_total_tokens: u32,
max_waiting_tokens: usize,
queue: Queue,
shared: Arc<Shared>,
generation_health: Arc<AtomicBool>,
) {
// Infinite loop
loop {
// Wait for a notification from the Infer struct
shared.batching_task.notified().await;
// Get the next batch from the queue
// This batch might be smaller than the maximum batch size if there are not enough requests
// waiting in the queue
while let Some((mut entries, batch, span)) =
queue.next_batch(None, max_batch_total_tokens).await
{
let mut cached_batch = prefill(&mut client, batch, &mut entries, &generation_health)
.instrument(span)
.await;
let mut waiting_tokens = 1;
// We loop until we do not receive any cached batch from the inference server (== until
// all requests have met their stopping criteria)
while let Some(batch) = cached_batch {
// Get current batch info
let batch_size = batch.size;
let batch_max_tokens = batch.max_tokens;
let mut batches = vec![batch];
metrics::gauge!("tgi_batch_current_size", batch_size as f64);
metrics::gauge!("tgi_batch_current_max_tokens", batch_max_tokens as f64);
let min_size = if waiting_tokens >= max_waiting_tokens {
// If we didn't onboard any new requests since >= max_waiting_tokens, we try
// to add a new batch even though its size might be small
None
} else {
// Minimum batch size
Some((batch_size as f32 * waiting_served_ratio).floor() as usize)
};
let token_budget = max_batch_total_tokens - batch_max_tokens;
// Try to get a new batch
if let Some((mut new_entries, new_batch, span)) =
queue.next_batch(min_size, token_budget).await
{
// Tracking metrics
if min_size.is_some() {
metrics::increment_counter!("tgi_batch_concat", "reason" => "backpressure");
} else {
metrics::increment_counter!("tgi_batch_concat", "reason" => "wait_exceeded");
}
entries.iter_mut().for_each(|(_, entry)| {
// Create a new span to add the info that this entry is waiting
// because a new batch is being computed
let entry_waiting_span = info_span!(parent: &entry.span, "waiting");
// Add relationships
span.follows_from(&entry_waiting_span);
entry_waiting_span.follows_from(&span);
// Update entry
entry.temp_span = Some(entry_waiting_span);
});
// Generate one token for this new batch to have the attention past in cache
let new_cached_batch =
prefill(&mut client, new_batch, &mut new_entries, &generation_health)
.instrument(span)
.await;
// Reset waiting counter
waiting_tokens = 1;
// Extend current batch with the new batch
if let Some(new_cached_batch) = new_cached_batch {
entries.extend(new_entries);
batches.push(new_cached_batch);
}
}
// Create span for this batch to add context to inference calls
let next_batch_size = entries.len();
let next_batch_span =
info_span!(parent: None, "batch", batch_size = next_batch_size);
entries.iter_mut().for_each(|(_, entry)| {
// Create a new span to link the batch back to this entry
let entry_batch_span = info_span!(parent: &entry.span, "infer");
// Add relationships
next_batch_span.follows_from(&entry_batch_span);
entry_batch_span.follows_from(&next_batch_span);
// Update entry
entry.temp_span = Some(entry_batch_span);
});
cached_batch = decode(&mut client, batches, &mut entries, &generation_health)
.instrument(next_batch_span)
.await;
waiting_tokens += 1;
}
metrics::gauge!("tgi_batch_current_size", 0.0);
metrics::gauge!("tgi_batch_current_max_tokens", 0.0);
}
}
}
#[instrument(skip_all)]
async fn prefill(
client: &mut ShardedClient,
batch: Batch,
entries: &mut IntMap<u64, Entry>,
generation_health: &Arc<AtomicBool>,
) -> Option<Batch> {
let start_time = Instant::now();
let batch_id = batch.id;
metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill");
match client.prefill(batch).await {
Ok((generations, next_batch)) => {
// Update health
generation_health.store(true, Ordering::SeqCst);
// Send generated tokens and filter stopped entries
filter_send_generations(generations, entries);
// Filter next batch and remove requests that were stopped
let next_batch = filter_batch(client, next_batch, entries).await;
metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
next_batch
}
// If we have an error, we discard the whole batch
Err(err) => {
// Update health
generation_health.store(false, Ordering::SeqCst);
let _ = client.clear_cache(Some(batch_id)).await;
send_errors(err, entries);
metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
None
}
}
}
#[instrument(skip_all)]
async fn decode(
client: &mut ShardedClient,
batches: Vec<Batch>,
entries: &mut IntMap<u64, Entry>,
generation_health: &Arc<AtomicBool>,
) -> Option<Batch> {
let start_time = Instant::now();
let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
match client.decode(batches).await {
Ok((generations, next_batch)) => {
// Update health
generation_health.store(true, Ordering::SeqCst);
// Send generated tokens and filter stopped entries
filter_send_generations(generations, entries);
// Filter next batch and remove requests that were stopped
let next_batch = filter_batch(client, next_batch, entries).await;
metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
next_batch
}
// If we have an error, we discard the whole batch
Err(err) => {
generation_health.store(false, Ordering::SeqCst);
for id in batch_ids {
let _ = client.clear_cache(Some(id)).await;
}
send_errors(err, entries);
metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
None
}
}
}
/// Filter a `batch` and remove all requests not present in `entries`
#[instrument(skip_all)]
async fn filter_batch(
client: &mut ShardedClient,
next_batch: Option<Batch>,
entries: &IntMap<u64, Entry>,
) -> Option<Batch> {
let mut batch = next_batch?;
// No need to filter
if batch.size as usize == entries.len() {
return Some(batch);
}
let id = batch.id;
// Retain only requests that are still in entries
batch.requests.retain(|r| entries.contains_key(&r.id));
if batch.requests.is_empty() {
// All requests have been filtered out
// Next batch is now empty
// Clear it from the Python shards cache
// We unwrap here as we need to panic since we cannot recover if this method fails
client.clear_cache(Some(id)).await.unwrap();
None
} else {
// Filter Python shard cache
// We unwrap here as we need to panic since we cannot recover if this method fails
client.filter_batch(id, batch.requests).await.unwrap()
}
}
/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
/// and filter entries
#[instrument(skip_all)]
fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
generations.into_iter().for_each(|generation| {
let id = generation.request_id;
// Get entry
// We can `expect` here as the request id should always be in the entries
let entry = entries
.get(&id)
.expect("ID not found in entries. This is a bug.");
// Create and enter a span to link this function back to the entry
let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
// Send generation responses back to the infer task
// If the receive an error from the Flume channel, it means that the client dropped the
// request and we need to stop generating hence why we unwrap_or(true)
let stopped = send_responses(generation, entry).map_err(|err| {
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
err
}).unwrap_or(true);
if stopped {
entries.remove(&id).expect("ID not found in entries. This is a bug.");
}
});
}
/// Send responses through the `entry` response channel
fn send_responses(
generation: Generation,
entry: &Entry,
) -> Result<bool, SendError<Result<InferStreamResponse, InferError>>> {
let mut stopped = false;
if let Some(prefill_tokens) = generation.prefill_tokens {
// Send message
entry
.response_tx
.send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?;
}
// Create last Token
let token = Token {
id: generation.token_id,
text: generation.token_text,
logprob: generation.token_logprob,
special: generation.token_is_special,
};
if let Some(generated_text) = generation.generated_text {
// Generation has ended
stopped = true;
// Send message
entry.response_tx.send(Ok(InferStreamResponse::End {
token,
generated_text,
queued: entry.queue_time,
start: entry.batch_time.unwrap(),
}))?;
} else {
// Send message
entry
.response_tx
.send(Ok(InferStreamResponse::Token(token)))?;
}
Ok(stopped)
}
/// Send errors to Infer for all `entries`
#[instrument(skip_all)]
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
entries.drain().for_each(|(_, entry)| {
// Create and enter a span to link this function back to the entry
let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
let err = InferError::GenerationError(error.to_string());
metrics::increment_counter!("tgi_request_failure", "err" => "generation");
tracing::error!("{err}");
// unwrap_or is valid here as we don't care if the receiver is gone.
entry
.response_tx
.send(Err(err))
.unwrap_or(());
});
}
#[derive(Debug)]
pub(crate) enum InferStreamResponse {
// Optional first message
Prefill(PrefillTokens),
// Intermediate messages
Token(Token),
// Last message
End {
token: Token,
generated_text: GeneratedText,
start: Instant,
queued: Instant,
},
}
#[derive(Debug)]
pub(crate) struct InferResponse {
pub(crate) prefill: Vec<PrefillToken>,
pub(crate) tokens: Vec<Token>,
pub(crate) generated_text: GeneratedText,
pub(crate) queued: Instant,
pub(crate) start: Instant,
}
#[derive(Debug, Error)]
pub enum InferError {
#[error("Request failed during generation: {0}")]
GenerationError(String),
#[error("Model is overloaded")]
Overloaded(#[from] TryAcquireError),
#[error("Input validation error: {0}")]
ValidationError(#[from] ValidationError),
#[error("Incomplete generation")]
IncompleteGeneration,
}
impl InferError {
pub(crate) fn error_type(&self) -> &str {
match self {
InferError::GenerationError(_) => "generation",
InferError::Overloaded(_) => "overloaded",
InferError::ValidationError(_) => "validation",
InferError::IncompleteGeneration => "incomplete_generation",
}
}
}