Spaces:
Runtime error
Runtime error
import asyncio | |
import os | |
import torch | |
from grpc import aio | |
from loguru import logger | |
from grpc_reflection.v1alpha import reflection | |
from pathlib import Path | |
from typing import List, Optional | |
from text_generation_server.cache import Cache | |
from text_generation_server.interceptor import ExceptionInterceptor | |
from text_generation_server.models import Model, get_model | |
from text_generation_server.pb import generate_pb2_grpc, generate_pb2 | |
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor | |
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer): | |
def __init__(self, model: Model, cache: Cache, server_urls: List[str]): | |
self.cache = cache | |
self.model = model | |
self.server_urls = server_urls | |
# For some reason, inference_mode does not work well with GLOO which we use on CPU | |
if model.device.type == "cuda": | |
# Force inference mode for the lifetime of TextGenerationService | |
self._inference_mode_raii_guard = torch._C._InferenceMode(True) | |
async def Info(self, request, context): | |
return self.model.info | |
async def Health(self, request, context): | |
if self.model.device.type == "cuda": | |
torch.zeros((2, 2)).cuda() | |
return generate_pb2.HealthResponse() | |
async def ServiceDiscovery(self, request, context): | |
return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls) | |
async def ClearCache(self, request, context): | |
if request.HasField("id"): | |
self.cache.delete(request.id) | |
else: | |
self.cache.clear() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
return generate_pb2.ClearCacheResponse() | |
async def FilterBatch(self, request, context): | |
batch = self.cache.pop(request.batch_id) | |
if batch is None: | |
raise ValueError(f"Batch ID {request.batch_id} not found in cache.") | |
filtered_batch = batch.filter(request.keep_requests) | |
self.cache.set(filtered_batch) | |
return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb()) | |
async def Prefill(self, request, context): | |
batch = self.model.batch_type.from_pb( | |
request.batch, self.model.tokenizer, self.model.device | |
) | |
generations, next_batch = self.model.generate_token(batch) | |
self.cache.set(next_batch) | |
return generate_pb2.PrefillResponse( | |
generations=[generation.to_pb() for generation in generations], | |
batch=next_batch.to_pb() if next_batch else None, | |
) | |
async def Decode(self, request, context): | |
if len(request.batches) == 0: | |
raise ValueError("Must provide at least one batch") | |
batches = [] | |
for batch_pb in request.batches: | |
batch = self.cache.pop(batch_pb.id) | |
if batch is None: | |
raise ValueError(f"Batch ID {batch_pb.id} not found in cache.") | |
batches.append(batch) | |
if len(batches) == 0: | |
raise ValueError("All batches are empty") | |
if len(batches) > 1: | |
batch = self.model.batch_type.concatenate(batches) | |
else: | |
batch = batches[0] | |
generations, next_batch = self.model.generate_token(batch) | |
self.cache.set(next_batch) | |
return generate_pb2.DecodeResponse( | |
generations=[generation.to_pb() for generation in generations], | |
batch=next_batch.to_pb() if next_batch else None, | |
) | |
def serve( | |
model_id: str, | |
revision: Optional[str], | |
sharded: bool, | |
quantize: bool, | |
uds_path: Path, | |
): | |
async def serve_inner( | |
model_id: str, | |
revision: Optional[str], | |
sharded: bool = False, | |
quantize: bool = False, | |
): | |
unix_socket_template = "unix://{}-{}" | |
if sharded: | |
server_urls = [ | |
unix_socket_template.format(uds_path, rank) | |
for rank in range(int(os.environ["WORLD_SIZE"])) | |
] | |
local_url = server_urls[int(os.environ["RANK"])] | |
else: | |
local_url = unix_socket_template.format(uds_path, 0) | |
server_urls = [local_url] | |
try: | |
model = get_model(model_id, revision, sharded, quantize) | |
except Exception: | |
logger.exception("Error when initializing model") | |
raise | |
server = aio.server( | |
interceptors=[ | |
ExceptionInterceptor(), | |
UDSOpenTelemetryAioServerInterceptor(), | |
] | |
) | |
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server( | |
TextGenerationService(model, Cache(), server_urls), server | |
) | |
SERVICE_NAMES = ( | |
generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name, | |
reflection.SERVICE_NAME, | |
) | |
reflection.enable_server_reflection(SERVICE_NAMES, server) | |
server.add_insecure_port(local_url) | |
await server.start() | |
logger.info("Server started at {}".format(local_url)) | |
try: | |
await server.wait_for_termination() | |
except KeyboardInterrupt: | |
logger.info("Signal received. Shutting down") | |
await server.stop(0) | |
asyncio.run(serve_inner(model_id, revision, sharded, quantize)) | |