nateraw's picture
Rename app/app.py to app_old.py
891df5a
raw
history blame
5.01 kB
import streamlit as st
import soundfile as sf
from pedalboard import (
Pedalboard,
Chorus,
Compressor,
Convolution,
Distortion,
Gain,
HighpassFilter,
LadderFilter,
Limiter,
LowpassFilter,
NoiseGate,
Phaser,
Reverb,
)
objects_and_init_kwargs = [
(
Chorus,
{
"rate_hz": 1.0,
"depth": 0.25,
"centre_delay_ms": 7.0,
"feedback": 0.0,
"mix": 0.5,
},
),
(Compressor, {"threshold_db": 0, "ratio": 1, "attack_ms": 1.0, "release_ms": 100}),
# TODO - maybe add a few impulse responses to a folder + let folks cycle through them.
# (Convolution, {'impulse_response_filename': None, 'mix': 1.0}),
(Distortion, {"drive_db": 25}),
(Gain, {"gain_db": 1.0}),
(HighpassFilter, {"cutoff_frequency_hz": 50}),
(LadderFilter, {"mode": LadderFilter.LPF12, "cutoff_hz": 200, "drive": 1.0}),
(Limiter, {"threshold_db": -10.0, "release_ms": 100.0}),
(LowpassFilter, {"cutoff_frequency_hz": 50}),
(
NoiseGate,
{"threshold_db": -100.0, "ratio": 10, "attack_ms": 1.0, "release_ms": 100.0},
),
(
Phaser,
{
"rate_hz": 1.0,
"depth": 0.5,
"centre_frequency_hz": 1300.0,
"feedback": 0.0,
"mix": 0.5,
},
),
(
Reverb,
{
"room_size": 0.5,
"damping": 0.5,
"wet_level": 0.33,
"dry_level": 0.4,
"width": 1.0,
"freeze_mode": 0.0,
},
),
]
name_to_object_init_kwargs = {
obj.__name__: (obj, kwargs) for obj, kwargs in objects_and_init_kwargs
}
def get_transform_names(augmentations):
transform_names = [st.sidebar.selectbox("Select transformation โ„–1:", augmentations)]
while transform_names[-1] != "None":
transform_names.append(
st.sidebar.selectbox(
f"Select transformation โ„–{len(transform_names) + 1}:",
["None"] + augmentations,
)
)
transform_names = transform_names[:-1]
return transform_names
def get_transforms():
transform_names = get_transform_names(sorted(name_to_object_init_kwargs.keys()))
transforms = []
for i, name in enumerate(transform_names):
st.sidebar.markdown("---")
st.sidebar.markdown(f"#### transformation โ„–{i + 1}: {name}")
obj, kwargs = name_to_object_init_kwargs[name]
# ๐Ÿšจ OMG pls no ๐Ÿคฎ. It doesn't have to be this way. Do anything but this. ๐Ÿšจ
inputs = {}
for k, v in kwargs.items():
if k in ["mix", "room_size", "damping", "wet_level", "dry_level", "width", "freeze_mode", 'feedback']:
x = st.sidebar.slider(k, 0.0, 1.0, 0.1, key=f"{k}_{i}")
elif k in ['threshold_db', 'gain_db']:
x = st.sidebar.slider(k, -20., 20., 0., key=f"{k}_{i}")
elif k in ['rate_hz', 'centre_delay_ms', 'depth']:
x = st.sidebar.slider(k, 0., 10., 0.5, key=f"{k}_{i}")
elif k in ['drive_db']:
x = st.sidebar.slider(k, 0., 20., 0., key=f"{k}_{i}")
elif k in ['release']:
x = st.sidebar.slider(k, 0.01, 5000., 100., key=f"{k}_{i}")
elif k in ['ratio', 'drive']:
x = st.sidebar.slider(k, 1.0, 20., 4., key=f"{k}_{i}")
elif k in ['attack_ms', 'release_ms']:
x = st.sidebar.slider(k, 0.1, 2000., key=f"{k}_{i}")
elif k in ['cutoff_frequency_hz', 'cutoff_hz', 'centre_frequency_hz']:
x = st.sidebar.slider(k, 20, 20000, key=f"{k}_{i}")
elif k in ['mode']:
choices = [LadderFilter.LPF12, LadderFilter.HPF12, LadderFilter.BPF12, LadderFilter.LPF24, LadderFilter.HPF24, LadderFilter.BPF24]
x = st.sidebar.selectbox(k, choices)
else:
x = type(v)(st.sidebar.text_input(k, value=v))
inputs[k] = x
# st.json(inputs)
transforms.append(obj(**inputs))
return transforms
# ๐Ÿšจ TODO - messy. clean me pls.
audio_file = open('./example.wav', 'rb')
audio_bytes = audio_file.read()
st.markdown("## Input Audio")
st.audio(audio_bytes, format='audio/ogg')
# Run the audio through this pedalboard!
audio, sample_rate = sf.read('./example.wav')
# board = Pedalboard(get_transforms(), sample_rate=sample_rate)
board = Pedalboard(get_transforms())
effected = board(audio)
# Write the audio back as a wav file:
with sf.SoundFile('./outputs.wav', 'w', samplerate=sample_rate, channels=len(effected.shape)) as f:
f.write(effected)
audio_file = open('./outputs.wav', 'rb')
audio_bytes = audio_file.read()
st.markdown("## Effected Audio")
st.audio(audio_bytes, format='audio/wav')
from matplotlib import pyplot as plt
import librosa
import librosa.display
fig = plt.figure(figsize=(14, 5))
librosa.display.waveplot(effected, sr=sample_rate)
st.pyplot(fig)