lavila / main_finetune_retrieval.py
nateraw's picture
Upload . with huggingface_hub
39d5658
raw
history blame
29.6 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from collections import OrderedDict
import json
import math
import numpy as np
import os
import pandas as pd
import sys
import time
import torch
import torch.backends.cudnn as cudnn
import torch.cuda.amp as amp
from torch.distributed.optim import ZeroRedundancyOptimizer
import torch.nn.parallel
import torchvision.transforms as transforms
import torchvision.transforms._transforms_video as transforms_video
import wandb
from lavila.data import datasets
from lavila.data.video_transforms import Permute
from lavila.models import models, loss
from lavila.models.tokenizer import (MyBertTokenizer, MyDistilBertTokenizer, MyGPT2Tokenizer, SimpleTokenizer)
from lavila.models.utils import inflate_positional_embeds
from lavila.utils import distributed as dist_utils
from lavila.utils.evaluation_charades import charades_map
from lavila.utils.meter import AverageMeter, ProgressMeter
from lavila.utils.preprocess import generate_label_map
from lavila.utils.random import random_seed
from lavila.utils.scheduler import cosine_scheduler
from lavila.utils.evaluation_ek100mir import (calculate_k_counts, calculate_IDCG, calculate_mAP, calculate_nDCG)
def get_args_parser():
parser = argparse.ArgumentParser(description='lavila finetune and evaluation', add_help=False)
# Data
parser.add_argument('--dataset', default='ek100_mir', type=str,
choices=['ek100_mir', 'charades_ego'])
parser.add_argument('--root',
default='datasets/EK100/video_ht256px/',
type=str, help='path to dataset root')
parser.add_argument('--metadata',
default='datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_train.csv',
type=str, help='path to metadata file (train set)')
parser.add_argument('--metadata-val',
default='datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/EPIC_100_retrieval_test.csv',
type=str, help='path to metadata file (val set)')
parser.add_argument('--relevancy-path',
default='datasets/EK100/epic-kitchens-100-annotations/retrieval_annotations/relevancy/caption_relevancy_EPIC_100_retrieval_test.pkl',
type=str, help='path to relevancy matrix (val set)')
parser.add_argument('--output-dir', default='./', type=str, help='output dir')
parser.add_argument('--clip-length', default=16, type=int, help='clip length')
parser.add_argument('--clip-stride', default=4, type=int, help='clip stride')
parser.add_argument('--sparse-sample', action='store_true', help='switch to sparse sampling')
# Model
parser.add_argument('--pretrain-model', default='', type=str, help='path to pretrain model')
parser.add_argument('--resume', default='', type=str, help='path to resume from')
parser.add_argument('--find-unused-parameters', action='store_true',
help='do this during DDP (useful for models with tied weights)')
parser.add_argument('--drop-path-rate', default=0.1, type=float, help='drop path ratio')
# Training
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--warmup-epochs', default=1, type=int)
parser.add_argument('--start-epoch', default=0, type=int)
parser.add_argument('--batch-size', default=16, type=int,
help='number of samples per-device/per-gpu')
parser.add_argument('--freeze-temperature', action='store_true', help='freeze temperature if set to True')
parser.add_argument('--lr', default=3e-5, type=float)
parser.add_argument('--fix-lr', action='store_true', help='disable cosine lr decay if set True')
parser.add_argument('--lr-start', default=1e-6, type=float,
help='initial warmup lr')
parser.add_argument('--lr-end', default=1e-5, type=float,
help='minimum final lr')
parser.add_argument('--clip-grad-type', default='norm', choices=['norm', 'value'])
parser.add_argument('--clip-grad-value', default=None, type=float, help='')
parser.add_argument('--update-freq', default=1, type=int,
help='optimizer update frequency (i.e. gradient accumulation steps)')
parser.add_argument('--wd', default=0.01, type=float)
parser.add_argument('--betas', default=(0.9, 0.999), nargs=2, type=float)
parser.add_argument('--eps', default=1e-8, type=float)
parser.add_argument('--eval-freq', default=5, type=int)
parser.add_argument('--save-freq', default=5, type=int)
parser.add_argument('--disable-amp', action='store_true',
help='disable mixed-precision training (requires more memory and compute)')
parser.add_argument('--use-zero', action='store_true',
help='use ZeroRedundancyOptimizer to save memory')
parser.add_argument('--use-checkpoint', action='store_true',
help='use gradient checkpointing during training for significantly less GPU usage')
# System
parser.add_argument('--print-freq', default=100, type=int, help='print frequency')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers per process')
parser.add_argument('--evaluate', action='store_true', help='eval only')
parser.add_argument('--world-size', default=1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument('--dist-url', default='env://', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
parser.add_argument('--wandb', action='store_true', help='Enable WandB logging')
return parser
def main(args):
dist_utils.init_distributed_mode(args)
global best_acc1
random_seed(args.seed, dist_utils.get_rank())
if args.pretrain_model:
ckpt_path = args.pretrain_model
else:
raise Exception('no checkpoint found')
ckpt = torch.load(ckpt_path, map_location='cpu')
state_dict = OrderedDict()
for k, v in ckpt['state_dict'].items():
state_dict[k.replace('module.', '')] = v
old_args = ckpt['args']
print("=> creating model: {}".format(old_args.model))
model = getattr(models, old_args.model)(
pretrained=old_args.load_visual_pretrained,
pretrained2d=old_args.load_visual_pretrained is not None,
text_use_cls_token=old_args.use_cls_token,
project_embed_dim=old_args.project_embed_dim,
timesformer_gated_xattn=False,
timesformer_freeze_space=False,
num_frames=args.clip_length,
drop_path_rate=args.drop_path_rate,
)
model.logit_scale.requires_grad = False
model.cuda(args.gpu)
if 'TIMESFORMER' in old_args.model or 'EGOVLP' in old_args.model:
# inflate weight
print('=> inflating PE in models due to different frame numbers')
state_dict = inflate_positional_embeds(
model.state_dict(), state_dict,
num_frames=args.clip_length,
load_temporal_fix='bilinear',
)
model.load_state_dict(state_dict, strict=True)
print("=> loaded resume checkpoint '{}' (epoch {})".format(ckpt_path, ckpt['epoch']))
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], bucket_cap_mb=200,
find_unused_parameters=args.find_unused_parameters
)
p_wd, p_non_wd = [], []
for n, p in model.named_parameters():
if not p.requires_grad:
continue # frozen weights
if p.ndim < 2 or 'bias' in n or 'ln' in n or 'bn' in n:
p_non_wd.append(p)
else:
p_wd.append(p)
optim_params = [{"params": p_wd, "weight_decay": args.wd},
{"params": p_non_wd, "weight_decay": 0}]
if args.use_zero:
optimizer = ZeroRedundancyOptimizer(
optim_params, optimizer_class=torch.optim.AdamW,
lr=args.lr, betas=args.betas, eps=args.eps, weight_decay=args.wd
)
else:
optimizer = torch.optim.AdamW(optim_params, lr=args.lr, betas=args.betas,
eps=args.eps, weight_decay=args.wd)
scaler = amp.GradScaler(enabled=not args.disable_amp)
# optionally resume from a checkpoint (takes precedence over autoresume)
latest = os.path.join(args.output_dir, 'checkpoint.pt')
if os.path.isfile(latest):
args.resume = ''
if args.resume:
if os.path.isfile(args.resume):
print("=> loading resume checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cpu')
epoch = checkpoint['epoch'] if 'epoch' in checkpoint else 0
args.start_epoch = epoch
if not args.distributed:
state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
state_dict[k.replace('module.', '')] = v
result = model.load_state_dict(state_dict, strict=False)
else:
result = model.load_state_dict(checkpoint['state_dict'], strict=False)
print(result)
optimizer.load_state_dict(checkpoint['optimizer']) if 'optimizer' in checkpoint else ()
scaler.load_state_dict(checkpoint['scaler']) if 'scaler' in checkpoint else ()
best_acc1 = checkpoint['best_acc1']
print("=> loaded resume checkpoint '{}' (epoch {})"
.format(args.resume, epoch))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
# auto-resume from latest checkpoint in output directory
latest = os.path.join(args.output_dir, 'checkpoint.pt')
if os.path.isfile(latest):
print("=> loading latest checkpoint '{}'".format(latest))
latest_checkpoint = torch.load(latest, map_location='cpu')
args.start_epoch = latest_checkpoint['epoch']
model.load_state_dict(latest_checkpoint['state_dict'])
optimizer.load_state_dict(latest_checkpoint['optimizer'])
scaler.load_state_dict(latest_checkpoint['scaler'])
best_acc1 = latest_checkpoint['best_acc1']
print("=> loaded latest checkpoint '{}' (epoch {})"
.format(latest, latest_checkpoint['epoch']))
cudnn.benchmark = True
# Data loading code
print("=> creating dataset")
if old_args.model.endswith('DISTILBERT_BASE'):
tokenizer = MyDistilBertTokenizer('distilbert-base-uncased')
elif old_args.model.endswith('BERT_BASE'):
tokenizer = MyBertTokenizer('bert-base-uncased')
elif old_args.model.endswith('BERT_LARGE'):
tokenizer = MyBertTokenizer('bert-large-uncased')
elif old_args.model.endswith('GPT2'):
tokenizer = MyGPT2Tokenizer('gpt2')
elif old_args.model.endswith('GPT2_MEDIUM'):
tokenizer = MyGPT2Tokenizer('gpt2-medium')
elif old_args.model.endswith('GPT2_LARGE'):
tokenizer = MyGPT2Tokenizer('gpt2-large')
elif old_args.model.endswith('GPT2_XL'):
tokenizer = MyGPT2Tokenizer('gpt2-xl')
else:
print("Using SimpleTokenizer because of model '{}'. "
"Please check if this is what you want".format(old_args.model))
tokenizer = SimpleTokenizer()
if args.dataset == 'ek100_mir':
criterion = loss.MaxMarginRankingLoss(margin=0.2, fix_norm=True).cuda(args.gpu)
elif args.dataset == 'charades_ego':
criterion = loss.CLIPLoss(
use_vissl=True,
cache_labels=True,
rank=args.rank,
world_size=args.world_size
)
crop_size = 224 if '336PX' not in old_args.model else 336
transforms_list = [
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.RandomResizedCrop(crop_size, scale=(0.5, 1.0)),
]
if 'OPENAI' in old_args.model:
transforms_list.append(transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305]))
else:
transforms_list.append(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]))
train_transform = transforms.Compose(transforms_list)
val_transform = transforms.Compose([
Permute([3, 0, 1, 2]), # T H W C -> C T H W
transforms.Resize(crop_size),
transforms.CenterCrop(crop_size),
(transforms_video.NormalizeVideo(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]) if 'OPENAI' not in old_args.model else
transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305])),
])
# build dataset
args.model = old_args.model
args.norm_embed = old_args.norm_embed
if args.dataset == 'ek100_mir':
train_dataset = datasets.get_dataset(train_transform, tokenizer, args, is_training=True)
args.metadata = args.metadata.replace('train', 'test')
val_dataset = datasets.get_dataset(val_transform, tokenizer, args, is_training=False)
args.metadata = args.metadata.replace('test', 'train')
elif args.dataset == 'charades_ego':
train_dataset = datasets.VideoCaptionDatasetCLIP(
'charades_ego_trimmed', args.root, args.metadata,
transform=train_transform, is_training=True, tokenizer=tokenizer,
clip_length=args.clip_length, clip_stride=args.clip_stride
)
labels, mapping_vn2act = generate_label_map(args.dataset)
val_dataset = datasets.VideoClassyDataset(
args.dataset, args.root, args.metadata_val,
transform=val_transform, is_training=False,
label_mapping=mapping_vn2act, is_trimmed=False,
num_clips=1, clip_length=args.clip_length, clip_stride=args.clip_stride,
sparse_sample=args.sparse_sample,
)
else:
raise NotImplementedError
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
val_sampler = torch.utils.data.SequentialSampler(val_dataset) # disable distributed
else:
train_sampler = None
val_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True
)
print('len(train_loader) = {}'.format(len(train_loader)))
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=(val_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=val_sampler, drop_last=False
)
print('len(val_loader) = {}'.format(len(val_loader)))
if args.evaluate:
if args.dataset == 'ek100_mir':
_ = validate_mir(val_loader, model, criterion, args)
elif args.dataset == 'charades_ego':
_ = validate_cls(val_loader, ['{}'], labels, model, tokenizer, args)
return
if args.fix_lr:
lr_schedule = None
else:
lr_schedule = cosine_scheduler(
args.lr, args.lr_end, args.epochs, len(train_loader) // args.update_freq,
warmup_epochs=args.warmup_epochs, start_warmup_value=args.lr_start,
)
if dist_utils.is_main_process() and args.wandb:
wandb_id = os.path.split(args.output_dir)[-1]
wandb.init(project='LaViLa', id=wandb_id, config=args, resume='allow')
print(args)
print("=> zero-shot testing")
if args.dataset == 'ek100_mir':
_ = validate_mir(val_loader, model, criterion, args)
elif args.dataset == 'charades_ego':
_ = validate_cls(val_loader, ['{}'], labels, model, tokenizer, args)
print("=> beginning training")
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
train_stats = train(train_loader, model, criterion, optimizer, scaler, epoch, lr_schedule, args)
is_epoch = ((epoch + 1) % args.save_freq) == 0
print('=> saving checkpoint')
dist_utils.save_on_master({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scaler': scaler.state_dict(),
'best_acc1': 0,
'args': args,
}, False, args.output_dir, is_epoch=is_epoch)
if (epoch + 1) % args.eval_freq != 0:
continue
# TODO: add evaluation
if args.dataset == 'ek100_mir':
val_stats = validate_mir(val_loader, model, criterion, args)
elif args.dataset == 'charades_ego':
val_stats = validate_cls(val_loader, ['{}'], labels, model, tokenizer, args)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in val_stats.items()},
'epoch': epoch}
if dist_utils.is_main_process():
if args.wandb:
wandb.log(log_stats)
with open(os.path.join(args.output_dir, 'log.txt'), 'a') as f:
f.write(json.dumps(log_stats) + '\n')
def train(train_loader, model, criterion, optimizer, scaler, epoch, lr_schedule, args):
batch_time = AverageMeter('Time', ':6.2f')
data_time = AverageMeter('Data', ':6.2f')
mem = AverageMeter('Mem (GB)', ':6.1f')
if args.dataset == 'ek100_mir':
metric_names = ['loss', 'max_margin_loss']
elif args.dataset == 'charades_ego':
metric_names = models.get_metric_names(args.model)
iters_per_epoch = len(train_loader) // args.update_freq
metrics = OrderedDict([(name, AverageMeter(name, ':.2e')) for name in metric_names])
progress = ProgressMeter(
iters_per_epoch,
[batch_time, data_time, mem, *metrics.values()],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for data_iter, inputs in enumerate(train_loader):
optim_iter = data_iter // args.update_freq
# measure data loading time
data_time.update(time.time() - end)
# update weight decay and learning rate according to their schedule
it = iters_per_epoch * epoch + optim_iter # global training iteration
for k, param_group in enumerate(optimizer.param_groups):
if lr_schedule is not None:
param_group['lr'] = lr_schedule[it]
inputs = [tensor.cuda(args.gpu, non_blocking=True) for tensor in inputs]
relevancies = inputs.pop()
# compute output
with amp.autocast(enabled=not args.disable_amp):
outputs = model(
*inputs,
use_checkpoint=args.use_checkpoint,
norm_embed=args.norm_embed
)
if args.dataset == 'ek100_mir':
loss_dict = criterion(outputs, weight=relevancies)
elif args.dataset == 'charades_ego':
loss_dict = criterion(outputs)
loss = loss_dict['loss']
loss /= args.update_freq
if not math.isfinite(loss.item()):
print("Loss is {}, stopping training".format(loss.item()))
sys.exit(1)
scaler.scale(loss).backward()
# TODO: for debug only
# for n, p in model.named_parameters():
# if p.grad is not None:
# print('{}: {} | {}'.format(n, torch.mean(torch.abs(p.data)), torch.mean(torch.abs(p.grad))), flush=True)
# else:
# print('{}: {} | {}'.format(n, torch.mean(torch.abs(p.data)), 'None'), flush=True)
# if torch.isnan(loss):
# for n, p in model.named_parameters():
# print(f'{n}:', p.grad, flush=True)
if (data_iter + 1) % args.update_freq != 0:
continue
if args.clip_grad_value is not None:
scaler.unscale_(optimizer)
if args.clip_grad_type == 'norm':
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.clip_grad_value, norm_type=2.
)
elif args.clip_grad_type == 'value':
torch.nn.utils.clip_grad_value_(model.parameters(), args.clip_grad_value)
else:
assert False, f"Unknown clip mode ({args.clip_grad_type})."
# compute gradient and do SGD step
scaler.step(optimizer)
scaler.update()
model.zero_grad(set_to_none=True)
if hasattr(dist_utils.get_model(model), 'logit_scale'):
# clamp logit scale to [0, 100]
dist_utils.get_model(model).logit_scale.data.clamp_(0, 4.6052)
logit_scale = dist_utils.get_model(model).logit_scale.exp().item()
else:
logit_scale = torch.nan
for k in loss_dict:
metrics[k].update(loss_dict[k].item(), args.batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
mem.update(torch.cuda.max_memory_allocated() // 1e9)
if optim_iter % args.print_freq == 0:
if dist_utils.is_main_process() and args.wandb:
wandb.log({**{k: v.item() for k, v in loss_dict.items()},
'scaler': scaler.get_scale(), 'logit': logit_scale})
progress.display(optim_iter)
progress.synchronize()
return {**{k: v.avg for k, v in metrics.items()},
'lr': optimizer.param_groups[0]['lr'],
'logit_scale': logit_scale}
def validate_mir(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.2f')
data_time = AverageMeter('Data', ':6.2f')
mem = AverageMeter('Mem (GB)', ':6.1f')
metric_names = ['loss', 'max_margin_loss']
iters_per_epoch = len(val_loader) // args.update_freq
metrics = OrderedDict([(name, AverageMeter(name, ':.2e')) for name in metric_names])
progress = ProgressMeter(
iters_per_epoch,
[batch_time, data_time, mem, *metrics.values()],
prefix="Test: "
)
# switch to eval mode
model.eval()
all_video_embed = []
all_text_embed = []
with torch.no_grad():
end = time.time()
for i, inputs in enumerate(val_loader):
# measure data loading time
data_time.update(time.time() - end)
inputs = [tensor.cuda(args.gpu, non_blocking=True) for tensor in inputs]
relevancies = inputs.pop()
# compute output
outputs = model(
*inputs,
use_checkpoint=args.use_checkpoint,
norm_embed=args.norm_embed
)
loss_dict = criterion(outputs, weight=relevancies)
for k in loss_dict:
metrics[k].update(loss_dict[k].item(), args.batch_size)
image_features = outputs['image_embed']
text_features = outputs['text_embed']
all_video_embed.append(image_features.cpu().numpy())
all_text_embed.append(text_features.cpu().numpy())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
mem.update(torch.cuda.max_memory_allocated() // 1e9)
if i % args.print_freq == 0:
if dist_utils.is_main_process() and args.wandb:
wandb.log({**{k: v.item() for k, v in loss_dict.items()}})
progress.display(i)
progress.synchronize()
all_text_embed = np.vstack(all_text_embed)
all_video_embed = np.vstack(all_video_embed)
similarity_matrix = np.matmul(all_video_embed, all_text_embed.T)
similarity_matrix = (similarity_matrix + 1) / 2
video_id = pd.read_csv(args.metadata.replace('train', 'test')).values[:, 0]
text_id = pd.read_csv(args.metadata.replace('train', 'test_sentence')).values[:, 0]
indexes = [video_id.tolist().index(elem) for elem in text_id]
similarity_matrix = similarity_matrix[:, indexes]
print(similarity_matrix.shape)
rel_matrix = pd.read_pickle(
args.relevancy_path
)
vis_map = calculate_mAP(similarity_matrix, rel_matrix)
txt_map = calculate_mAP(similarity_matrix.T, rel_matrix.T)
print('mAP: V->T: {:.3f} T->V: {:.3f} AVG: {:.3f}'.format(vis_map, txt_map, (vis_map + txt_map) / 2))
vis_k_counts = calculate_k_counts(rel_matrix)
txt_k_counts = calculate_k_counts(rel_matrix.T)
vis_IDCG = calculate_IDCG(rel_matrix, vis_k_counts)
txt_IDCG = calculate_IDCG(rel_matrix.T, txt_k_counts)
vis_nDCG = calculate_nDCG(similarity_matrix, rel_matrix, k_counts=vis_k_counts, IDCG=vis_IDCG)
txt_nDCG = calculate_nDCG(similarity_matrix.T, rel_matrix.T, k_counts=txt_k_counts, IDCG=txt_IDCG)
print('nDCG: V->T: {:.3f} T->V: {:.3f} AVG: {:.3f}'.format(vis_nDCG, txt_nDCG, (vis_nDCG + txt_nDCG) / 2))
return {**{k: v.avg for k, v in metrics.items()}}
def validate_cls(val_loader, templates, labels, model, tokenizer, args):
# switch to eval mode
model.eval()
all_outputs = []
all_targets = []
with torch.no_grad():
text_features = []
for label in labels:
if isinstance(label, list):
texts = [tmpl.format(lbl) for tmpl in templates for lbl in label]
else:
texts = [tmpl.format(label) for tmpl in templates]
texts = tokenizer(texts)
if isinstance(texts, tuple):
# Bert-style tokenizer will output both ids and mask
texts, masks = texts
texts = texts.cuda(non_blocking=True)
masks = masks.cuda(non_blocking=True)
else:
texts = texts.cuda(non_blocking=True)
masks = None
texts = texts.view(-1, 77).contiguous()
masks = masks.view(-1, 77).contiguous() if masks is not None else None
if masks is not None:
class_embeddings = dist_utils.get_model(model).encode_text(texts, attention_mask=masks)
else:
class_embeddings = dist_utils.get_model(model).encode_text(texts)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
class_embeddings = class_embeddings.mean(dim=0)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
text_features.append(class_embeddings)
text_features = torch.stack(text_features, dim=0)
print('=> start forwarding')
end_time = time.time()
for i, (images, target) in enumerate(val_loader):
if i % args.print_freq == 0:
print('finish batch {}/{} in {} sec'.format(i, len(val_loader), time.time() - end_time))
end_time = time.time()
if isinstance(images, torch.Tensor):
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# encode images
image_features = dist_utils.get_model(model).encode_image(images)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logits_per_image = image_features @ text_features.t()
logits_per_image = torch.softmax(logits_per_image, dim=1)
else:
target = target.cuda(non_blocking=True)
images_list = images
logits_all_clips = []
for images in images_list:
images = images.cuda(non_blocking=True)
image_features = dist_utils.get_model(model).encode_image(images)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
logits_per_image = image_features @ text_features.t()
logits_all_clips.append(logits_per_image)
logits_all_clips = torch.stack(logits_all_clips, dim=0)
# logits_per_image = logits_all_clips.max(0).values
logits_per_image = logits_all_clips.mean(0)
logits_per_image = torch.softmax(logits_per_image, dim=1)
all_outputs.append(logits_per_image.cpu())
all_targets.append(target.cpu())
all_outputs = torch.cat(all_outputs)
all_targets = torch.cat(all_targets)
preds, targets = all_outputs.numpy(), all_targets.numpy()
m_ap, _, _ = charades_map(preds, targets)
print('mAP = {:.3f}'.format(m_ap))
return {'mAP': m_ap}
if __name__ == '__main__':
parser = argparse.ArgumentParser('lavila finetune and evaluation', parents=[get_args_parser()])
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
main(args)