Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
from torchvision.models.resnet import resnet50 | |
import vision_transformer as vits | |
dependencies = ["torch", "torchvision"] | |
def dino_vits16(pretrained=True, **kwargs): | |
""" | |
ViT-Small/16x16 pre-trained with DINO. | |
Achieves 74.5% top-1 accuracy on ImageNet with k-NN classification. | |
""" | |
model = vits.__dict__["vit_small"](patch_size=16, num_classes=0, **kwargs) | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth", | |
map_location="cpu", | |
) | |
model.load_state_dict(state_dict, strict=True) | |
return model | |
def dino_vits8(pretrained=True, **kwargs): | |
""" | |
ViT-Small/8x8 pre-trained with DINO. | |
Achieves 78.3% top-1 accuracy on ImageNet with k-NN classification. | |
""" | |
model = vits.__dict__["vit_small"](patch_size=8, num_classes=0, **kwargs) | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth", | |
map_location="cpu", | |
) | |
model.load_state_dict(state_dict, strict=True) | |
return model | |
def dino_vitb16(pretrained=True, **kwargs): | |
""" | |
ViT-Base/16x16 pre-trained with DINO. | |
Achieves 76.1% top-1 accuracy on ImageNet with k-NN classification. | |
""" | |
model = vits.__dict__["vit_base"](patch_size=16, num_classes=0, **kwargs) | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth", | |
map_location="cpu", | |
) | |
model.load_state_dict(state_dict, strict=True) | |
return model | |
def dino_vitb8(pretrained=True, **kwargs): | |
""" | |
ViT-Base/8x8 pre-trained with DINO. | |
Achieves 77.4% top-1 accuracy on ImageNet with k-NN classification. | |
""" | |
model = vits.__dict__["vit_base"](patch_size=8, num_classes=0, **kwargs) | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth", | |
map_location="cpu", | |
) | |
model.load_state_dict(state_dict, strict=True) | |
return model | |
def dino_resnet50(pretrained=True, **kwargs): | |
""" | |
ResNet-50 pre-trained with DINO. | |
Achieves 75.3% top-1 accuracy on ImageNet linear evaluation benchmark (requires to train `fc`). | |
""" | |
model = resnet50(pretrained=False, **kwargs) | |
model.fc = torch.nn.Identity() | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain.pth", | |
map_location="cpu", | |
) | |
model.load_state_dict(state_dict, strict=False) | |
return model | |
def dino_xcit_small_12_p16(pretrained=True, **kwargs): | |
""" | |
XCiT-Small-12/16 pre-trained with DINO. | |
""" | |
model = torch.hub.load('facebookresearch/xcit', "xcit_small_12_p16", num_classes=0, **kwargs) | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain.pth", | |
map_location="cpu", | |
) | |
model.load_state_dict(state_dict, strict=True) | |
return model | |
def dino_xcit_small_12_p8(pretrained=True, **kwargs): | |
""" | |
XCiT-Small-12/8 pre-trained with DINO. | |
""" | |
model = torch.hub.load('facebookresearch/xcit', "xcit_small_12_p8", num_classes=0, **kwargs) | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain.pth", | |
map_location="cpu", | |
) | |
model.load_state_dict(state_dict, strict=True) | |
return model | |
def dino_xcit_medium_24_p16(pretrained=True, **kwargs): | |
""" | |
XCiT-Medium-24/16 pre-trained with DINO. | |
""" | |
model = torch.hub.load('facebookresearch/xcit', "xcit_medium_24_p16", num_classes=0, **kwargs) | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain.pth", | |
map_location="cpu", | |
) | |
model.load_state_dict(state_dict, strict=True) | |
return model | |
def dino_xcit_medium_24_p8(pretrained=True, **kwargs): | |
""" | |
XCiT-Medium-24/8 pre-trained with DINO. | |
""" | |
model = torch.hub.load('facebookresearch/xcit', "xcit_medium_24_p8", num_classes=0, **kwargs) | |
if pretrained: | |
state_dict = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain.pth", | |
map_location="cpu", | |
) | |
model.load_state_dict(state_dict, strict=True) | |
return model | |