Spaces:
Runtime error
Runtime error
# This script is modified from https://github.com/caizhongang/SMPLer-X/blob/main/common/utils/transforms.py | |
# Licensed under: | |
""" | |
S-Lab License 1.0 | |
Copyright 2022 S-Lab | |
Redistribution and use for non-commercial purpose in source and binary forms, with or without modification, are permitted provided that the following conditions are met: | |
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. | |
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. | |
3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. | |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
4. In the event that redistribution and/or use for commercial purpose in source or binary forms, with or without modification is required, please contact the contributor(s) of the work. | |
""" | |
""" | |
Function rotation_matrix_to_angle_axis, rotation_matrix_to_quaternion, and quaternion_to_angle_axis are | |
modified from https://github.com/eglxiang/torchgeometry/blob/master/torchgeometry/core/conversions.py | |
The original code is licensed under the License: https://github.com/eglxiang/torchgeometry/blob/master/LICENSE | |
We modified the code to make it compatible with the torch>=1.9.0. | |
""" | |
import torch | |
import numpy as np | |
from config import cfg | |
from torch.nn import functional as F | |
def cam2pixel(cam_coord, f, c): | |
x = cam_coord[:, 0] / cam_coord[:, 2] * f[0] + c[0] | |
y = cam_coord[:, 1] / cam_coord[:, 2] * f[1] + c[1] | |
z = cam_coord[:, 2] | |
return np.stack((x, y, z), 1) | |
def pixel2cam(pixel_coord, f, c): | |
x = (pixel_coord[:, 0] - c[0]) / f[0] * pixel_coord[:, 2] | |
y = (pixel_coord[:, 1] - c[1]) / f[1] * pixel_coord[:, 2] | |
z = pixel_coord[:, 2] | |
return np.stack((x, y, z), 1) | |
def world2cam(world_coord, R, t): | |
cam_coord = np.dot(R, world_coord.transpose(1, 0)).transpose(1, 0) + t.reshape(1, 3) | |
return cam_coord | |
def cam2world(cam_coord, R, t): | |
world_coord = np.dot(np.linalg.inv(R), (cam_coord - t.reshape(1, 3)).transpose(1, 0)).transpose(1, 0) | |
return world_coord | |
def rigid_transform_3D(A, B): | |
n, dim = A.shape | |
centroid_A = np.mean(A, axis=0) | |
centroid_B = np.mean(B, axis=0) | |
H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n | |
U, s, V = np.linalg.svd(H) | |
R = np.dot(np.transpose(V), np.transpose(U)) | |
if np.linalg.det(R) < 0: | |
s[-1] = -s[-1] | |
V[2] = -V[2] | |
R = np.dot(np.transpose(V), np.transpose(U)) | |
varP = np.var(A, axis=0).sum() | |
c = 1 / varP * np.sum(s) | |
t = -np.dot(c * R, np.transpose(centroid_A)) + np.transpose(centroid_B) | |
return c, R, t | |
def rigid_align(A, B): | |
c, R, t = rigid_transform_3D(A, B) | |
A2 = np.transpose(np.dot(c * R, np.transpose(A))) + t | |
return A2 | |
def transform_joint_to_other_db(src_joint, src_name, dst_name): | |
src_joint_num = len(src_name) | |
dst_joint_num = len(dst_name) | |
new_joint = np.zeros(((dst_joint_num,) + src_joint.shape[1:]), dtype=np.float32) | |
for src_idx in range(len(src_name)): | |
name = src_name[src_idx] | |
if name in dst_name: | |
dst_idx = dst_name.index(name) | |
new_joint[dst_idx] = src_joint[src_idx] | |
return new_joint | |
def rotation_matrix_to_angle_axis(rotation_matrix): | |
"""Convert 3x4 rotation matrix to Rodrigues vector | |
Args: | |
rotation_matrix (Tensor): rotation matrix. | |
Returns: | |
Tensor: Rodrigues vector transformation. | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 3)` | |
Example: | |
>>> input = torch.rand(2, 3, 4) # Nx4x4 | |
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 | |
""" | |
# todo add check that matrix is a valid rotation matrix | |
quaternion = rotation_matrix_to_quaternion(rotation_matrix) | |
return quaternion_to_angle_axis(quaternion) | |
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): | |
"""Convert 3x4 rotation matrix to 4d quaternion vector | |
This algorithm is based on algorithm described in | |
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 | |
Args: | |
rotation_matrix (Tensor): the rotation matrix to convert. | |
Return: | |
Tensor: the rotation in quaternion | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 4)` | |
Example: | |
>>> input = torch.rand(4, 3, 4) # Nx3x4 | |
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 | |
""" | |
if not torch.is_tensor(rotation_matrix): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(rotation_matrix))) | |
if len(rotation_matrix.shape) > 3: | |
raise ValueError("Input size must be a three dimensional tensor. Got {}".format(rotation_matrix.shape)) | |
if not rotation_matrix.shape[-2:] == (3, 4): | |
raise ValueError("Input size must be a N x 3 x 4 tensor. Got {}".format(rotation_matrix.shape)) | |
rmat_t = torch.transpose(rotation_matrix, 1, 2) | |
mask_d2 = rmat_t[:, 2, 2] < eps | |
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] | |
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] | |
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q0 = torch.stack([rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2]], -1) | |
t0_rep = t0.repeat(4, 1).t() | |
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q1 = torch.stack([rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]], -1) | |
t1_rep = t1.repeat(4, 1).t() | |
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q2 = torch.stack([rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2], -1) | |
t2_rep = t2.repeat(4, 1).t() | |
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q3 = torch.stack([t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0]], -1) | |
t3_rep = t3.repeat(4, 1).t() | |
mask_c0 = mask_d2 * mask_d0_d1 | |
""" | |
Modified the code from the original source to make it compatible with the torch>=1.9.0 | |
Original code: | |
mask_c1 = mask_d2 * (1 - mask_d0_d1) | |
mask_c2 = (1 - mask_d2) * mask_d0_nd1 | |
mask_c3 = (1 - mask_d2) * (1 - mask_d0_nd1) | |
""" | |
# From here | |
inv_mask_d0_d1 = ~mask_d0_d1 | |
inv_mask_d0_nd1 = ~mask_d0_nd1 | |
inv_mask_d2 = ~mask_d2 | |
mask_c1 = mask_d2 * inv_mask_d0_d1 | |
mask_c2 = inv_mask_d2 * mask_d0_nd1 | |
mask_c3 = inv_mask_d2 * inv_mask_d0_nd1 | |
# Until here | |
mask_c0 = mask_c0.view(-1, 1).type_as(q0) | |
mask_c1 = mask_c1.view(-1, 1).type_as(q1) | |
mask_c2 = mask_c2.view(-1, 1).type_as(q2) | |
mask_c3 = mask_c3.view(-1, 1).type_as(q3) | |
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 | |
q /= torch.sqrt( | |
t0_rep * mask_c0 | |
+ t1_rep * mask_c1 # noqa | |
+ t2_rep * mask_c2 | |
+ t3_rep * mask_c3 | |
) # noqa | |
q *= 0.5 | |
return q | |
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: | |
"""Convert quaternion vector to angle axis of rotation. | |
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
Args: | |
quaternion (torch.Tensor): tensor with quaternions. | |
Return: | |
torch.Tensor: tensor with angle axis of rotation. | |
Shape: | |
- Input: :math:`(*, 4)` where `*` means, any number of dimensions | |
- Output: :math:`(*, 3)` | |
Example: | |
>>> quaternion = torch.rand(2, 4) # Nx4 | |
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 | |
""" | |
if not torch.is_tensor(quaternion): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(quaternion))) | |
if not quaternion.shape[-1] == 4: | |
raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}".format(quaternion.shape)) | |
# unpack input and compute conversion | |
q1: torch.Tensor = quaternion[..., 1] | |
q2: torch.Tensor = quaternion[..., 2] | |
q3: torch.Tensor = quaternion[..., 3] | |
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 | |
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) | |
cos_theta: torch.Tensor = quaternion[..., 0] | |
two_theta: torch.Tensor = 2.0 * torch.where(cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), torch.atan2(sin_theta, cos_theta)) | |
k_pos: torch.Tensor = two_theta / sin_theta | |
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) | |
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) | |
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] | |
angle_axis[..., 0] += q1 * k | |
angle_axis[..., 1] += q2 * k | |
angle_axis[..., 2] += q3 * k | |
return angle_axis | |
def rot6d_to_axis_angle(x): | |
batch_size = x.shape[0] | |
x = x.view(-1, 3, 2) | |
a1 = x[:, :, 0] | |
a2 = x[:, :, 1] | |
b1 = F.normalize(a1) | |
b2 = F.normalize(a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1) | |
b3 = torch.cross(b1, b2) | |
rot_mat = torch.stack((b1, b2, b3), dim=-1) # 3x3 rotation matrix | |
rot_mat = torch.cat([rot_mat, torch.zeros((batch_size, 3, 1)).to(cfg.device).float()], 2) # 3x4 rotation matrix | |
axis_angle = rotation_matrix_to_angle_axis(rot_mat).reshape(-1, 3) # axis-angle | |
axis_angle[torch.isnan(axis_angle)] = 0.0 | |
return axis_angle | |
def sample_joint_features(img_feat, joint_xy): | |
height, width = img_feat.shape[2:] | |
x = joint_xy[:, :, 0] / (width - 1) * 2 - 1 | |
y = joint_xy[:, :, 1] / (height - 1) * 2 - 1 | |
grid = torch.stack((x, y), 2)[:, :, None, :] | |
img_feat = F.grid_sample(img_feat, grid, align_corners=True)[:, :, :, 0] # batch_size, channel_dim, joint_num | |
img_feat = img_feat.permute(0, 2, 1).contiguous() # batch_size, joint_num, channel_dim | |
return img_feat | |
def soft_argmax_2d(heatmap2d): | |
batch_size = heatmap2d.shape[0] | |
height, width = heatmap2d.shape[2:] | |
heatmap2d = heatmap2d.reshape((batch_size, -1, height * width)) | |
heatmap2d = F.softmax(heatmap2d, 2) | |
heatmap2d = heatmap2d.reshape((batch_size, -1, height, width)) | |
accu_x = heatmap2d.sum(dim=(2)) | |
accu_y = heatmap2d.sum(dim=(3)) | |
accu_x = accu_x * torch.arange(width).float().to(cfg.device)[None, None, :] | |
accu_y = accu_y * torch.arange(height).float().to(cfg.device)[None, None, :] | |
accu_x = accu_x.sum(dim=2, keepdim=True) | |
accu_y = accu_y.sum(dim=2, keepdim=True) | |
coord_out = torch.cat((accu_x, accu_y), dim=2) | |
return coord_out | |
def soft_argmax_3d(heatmap3d): | |
batch_size = heatmap3d.shape[0] | |
depth, height, width = heatmap3d.shape[2:] | |
heatmap3d = heatmap3d.reshape((batch_size, -1, depth * height * width)) | |
heatmap3d = F.softmax(heatmap3d, 2) | |
heatmap3d = heatmap3d.reshape((batch_size, -1, depth, height, width)) | |
accu_x = heatmap3d.sum(dim=(2, 3)) | |
accu_y = heatmap3d.sum(dim=(2, 4)) | |
accu_z = heatmap3d.sum(dim=(3, 4)) | |
accu_x = accu_x * torch.arange(width).float().to(cfg.device)[None, None, :] | |
accu_y = accu_y * torch.arange(height).float().to(cfg.device)[None, None, :] | |
accu_z = accu_z * torch.arange(depth).float().to(cfg.device)[None, None, :] | |
accu_x = accu_x.sum(dim=2, keepdim=True) | |
accu_y = accu_y.sum(dim=2, keepdim=True) | |
accu_z = accu_z.sum(dim=2, keepdim=True) | |
coord_out = torch.cat((accu_x, accu_y, accu_z), dim=2) | |
return coord_out | |
def restore_bbox(bbox_center, bbox_size, aspect_ratio, extension_ratio): | |
bbox = bbox_center.view(-1, 1, 2) + torch.cat( | |
(-bbox_size.view(-1, 1, 2) / 2.0, bbox_size.view(-1, 1, 2) / 2.0), 1 | |
) # xyxy in (cfg.output_hm_shape[2], cfg.output_hm_shape[1]) space | |
bbox[:, :, 0] = bbox[:, :, 0] / cfg.output_hm_shape[2] * cfg.input_body_shape[1] | |
bbox[:, :, 1] = bbox[:, :, 1] / cfg.output_hm_shape[1] * cfg.input_body_shape[0] | |
bbox = bbox.view(-1, 4) | |
# xyxy -> xywh | |
bbox[:, 2] = bbox[:, 2] - bbox[:, 0] | |
bbox[:, 3] = bbox[:, 3] - bbox[:, 1] | |
# aspect ratio preserving bbox | |
w = bbox[:, 2] | |
h = bbox[:, 3] | |
c_x = bbox[:, 0] + w / 2.0 | |
c_y = bbox[:, 1] + h / 2.0 | |
mask1 = w > (aspect_ratio * h) | |
mask2 = w < (aspect_ratio * h) | |
h[mask1] = w[mask1] / aspect_ratio | |
w[mask2] = h[mask2] * aspect_ratio | |
bbox[:, 2] = w * extension_ratio | |
bbox[:, 3] = h * extension_ratio | |
bbox[:, 0] = c_x - bbox[:, 2] / 2.0 | |
bbox[:, 1] = c_y - bbox[:, 3] / 2.0 | |
# xywh -> xyxy | |
bbox[:, 2] = bbox[:, 2] + bbox[:, 0] | |
bbox[:, 3] = bbox[:, 3] + bbox[:, 1] | |
return bbox | |