Spaces:
Running
Running
| // Various helper functions and utilities | |
| // | |
| // CLI argument parsing | |
| // | |
| struct gpt_params { | |
| int32_t seed = -1; // RNG seed | |
| int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); | |
| int32_t n_predict = 200; // new tokens to predict | |
| // sampling parameters | |
| int32_t top_k = 40; | |
| float top_p = 0.9f; | |
| float temp = 0.9f; | |
| int32_t n_batch = 8; // batch size for prompt processing | |
| std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path | |
| std::string prompt = ""; | |
| std::string token_test = ""; | |
| }; | |
| bool gpt_params_parse(int argc, char ** argv, gpt_params & params); | |
| void gpt_print_usage(int argc, char ** argv, const gpt_params & params); | |
| std::string gpt_random_prompt(std::mt19937 & rng); | |
| // | |
| // Vocab utils | |
| // | |
| std::string trim(const std::string & s); | |
| std::string replace( | |
| const std::string & s, | |
| const std::string & from, | |
| const std::string & to); | |
| struct gpt_vocab { | |
| using id = int32_t; | |
| using token = std::string; | |
| std::map<token, id> token_to_id; | |
| std::map<id, token> id_to_token; | |
| std::vector<std::string> special_tokens; | |
| void add_special_token(const std::string & token); | |
| }; | |
| // poor-man's JSON parsing | |
| std::map<std::string, int32_t> json_parse(const std::string & fname); | |
| std::string convert_to_utf8(const std::wstring & input); | |
| std::wstring convert_to_wstring(const std::string & input); | |
| void gpt_split_words(std::string str, std::vector<std::string>& words); | |
| // split text into tokens | |
| // | |
| // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53 | |
| // | |
| // Regex (Python): | |
| // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" | |
| // | |
| // Regex (C++): | |
| // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)" | |
| // | |
| std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text); | |
| // test outputs of gpt_tokenize | |
| // | |
| // - compare with tokens generated by the huggingface tokenizer | |
| // - test cases are chosen based on the model's main language (under 'prompt' directory) | |
| // - if all sentences are tokenized identically, print 'All tests passed.' | |
| // - otherwise, print sentence, huggingface tokens, ggml tokens | |
| // | |
| void test_gpt_tokenizer(gpt_vocab & vocab, const std::string & fpath_test); | |
| // load the tokens from encoder.json | |
| bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab); | |
| // sample next token given probabilities for each embedding | |
| // | |
| // - consider only the top K tokens | |
| // - from them, consider only the top tokens with cumulative probability > P | |
| // | |
| // TODO: not sure if this implementation is correct | |
| // TODO: temperature is not implemented | |
| // | |
| gpt_vocab::id gpt_sample_top_k_top_p( | |
| const gpt_vocab & vocab, | |
| const float * logits, | |
| int top_k, | |
| double top_p, | |
| double temp, | |
| std::mt19937 & rng); | |
| gpt_vocab::id gpt_sample_top_k_top_p_repeat( | |
| const gpt_vocab & vocab, | |
| const float * logits, | |
| const int32_t * last_n_tokens_data, | |
| size_t last_n_tokens_data_size, | |
| int top_k, | |
| double top_p, | |
| double temp, | |
| int repeat_last_n, | |
| float repeat_penalty, | |
| std::mt19937 & rng); | |
| // | |
| // Audio utils | |
| // | |
| // Read WAV audio file and store the PCM data into pcmf32 | |
| // The sample rate of the audio must be equal to COMMON_SAMPLE_RATE | |
| // If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM | |
| bool read_wav( | |
| const std::string & fname, | |
| std::vector<float> & pcmf32, | |
| std::vector<std::vector<float>> & pcmf32s, | |
| bool stereo); | |
| // Apply a high-pass frequency filter to PCM audio | |
| // Suppresses frequencies below cutoff Hz | |
| void high_pass_filter( | |
| std::vector<float> & data, | |
| float cutoff, | |
| float sample_rate); | |
| // Basic voice activity detection (VAD) using audio energy adaptive threshold | |
| bool vad_simple( | |
| std::vector<float> & pcmf32, | |
| int sample_rate, | |
| int last_ms, | |
| float vad_thold, | |
| float freq_thold, | |
| bool verbose); | |
| // compute similarity between two strings using Levenshtein distance | |
| float similarity(const std::string & s0, const std::string & s1); | |