Spaces:
Runtime error
Runtime error
Upload 645 files
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- checkpoints/humanparsing/parsing_atr.onnx +3 -0
- checkpoints/humanparsing/parsing_lip.onnx +3 -0
- checkpoints/ootd/feature_extractor/preprocessor_config.json +20 -0
- checkpoints/ootd/model_index.json +38 -0
- checkpoints/ootd/ootd_dc/checkpoint-36000/unet_garm/config.json +68 -0
- checkpoints/ootd/ootd_dc/checkpoint-36000/unet_garm/diffusion_pytorch_model.safetensors +3 -0
- checkpoints/ootd/ootd_dc/checkpoint-36000/unet_vton/config.json +68 -0
- checkpoints/ootd/ootd_dc/checkpoint-36000/unet_vton/diffusion_pytorch_model.safetensors +3 -0
- checkpoints/ootd/ootd_hd/checkpoint-36000/unet_garm/config.json +68 -0
- checkpoints/ootd/ootd_hd/checkpoint-36000/unet_garm/diffusion_pytorch_model.safetensors +3 -0
- checkpoints/ootd/ootd_hd/checkpoint-36000/unet_vton/config.json +68 -0
- checkpoints/ootd/ootd_hd/checkpoint-36000/unet_vton/diffusion_pytorch_model.safetensors +3 -0
- checkpoints/ootd/scheduler/scheduler_config.json +25 -0
- checkpoints/ootd/text_encoder/config.json +25 -0
- checkpoints/ootd/text_encoder/pytorch_model.bin +3 -0
- checkpoints/ootd/tokenizer/merges.txt +0 -0
- checkpoints/ootd/tokenizer/special_tokens_map.json +24 -0
- checkpoints/ootd/tokenizer/tokenizer_config.json +34 -0
- checkpoints/ootd/tokenizer/vocab.json +0 -0
- checkpoints/ootd/vae/config.json +31 -0
- checkpoints/ootd/vae/diffusion_pytorch_model.bin +3 -0
- ootd/inference_ootd.py +133 -0
- ootd/inference_ootd_dc.py +132 -0
- ootd/inference_ootd_hd.py +132 -0
- ootd/pipelines_ootd/attention_garm.py +402 -0
- ootd/pipelines_ootd/attention_vton.py +407 -0
- ootd/pipelines_ootd/pipeline_ootd.py +846 -0
- ootd/pipelines_ootd/transformer_garm_2d.py +449 -0
- ootd/pipelines_ootd/transformer_vton_2d.py +452 -0
- ootd/pipelines_ootd/unet_garm_2d_blocks.py +0 -0
- ootd/pipelines_ootd/unet_garm_2d_condition.py +1183 -0
- ootd/pipelines_ootd/unet_vton_2d_blocks.py +0 -0
- ootd/pipelines_ootd/unet_vton_2d_condition.py +1183 -0
- preprocess/humanparsing/datasets/__init__.py +0 -0
- preprocess/humanparsing/datasets/datasets.py +201 -0
- preprocess/humanparsing/datasets/simple_extractor_dataset.py +89 -0
- preprocess/humanparsing/datasets/target_generation.py +40 -0
- preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/human_to_coco.py +166 -0
- preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/pycococreatortools.py +114 -0
- preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py +74 -0
- preprocess/humanparsing/mhp_extension/detectron2/.circleci/config.yml +179 -0
- preprocess/humanparsing/mhp_extension/detectron2/.clang-format +85 -0
- preprocess/humanparsing/mhp_extension/detectron2/.flake8 +9 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md +5 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md +49 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg +1 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md +5 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md +36 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml +9 -0
- preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md +31 -0
checkpoints/humanparsing/parsing_atr.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04c7d1d070d0e0ae943d86b18cb5aaaea9e278d97462e9cfb270cbbe4cd977f4
|
3 |
+
size 266859305
|
checkpoints/humanparsing/parsing_lip.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8436e1dae96e2601c373d1ace29c8f0978b16357d9038c17a8ba756cca376dbc
|
3 |
+
size 266863411
|
checkpoints/ootd/feature_extractor/preprocessor_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": 224,
|
3 |
+
"do_center_crop": true,
|
4 |
+
"do_convert_rgb": true,
|
5 |
+
"do_normalize": true,
|
6 |
+
"do_resize": true,
|
7 |
+
"feature_extractor_type": "CLIPFeatureExtractor",
|
8 |
+
"image_mean": [
|
9 |
+
0.48145466,
|
10 |
+
0.4578275,
|
11 |
+
0.40821073
|
12 |
+
],
|
13 |
+
"image_std": [
|
14 |
+
0.26862954,
|
15 |
+
0.26130258,
|
16 |
+
0.27577711
|
17 |
+
],
|
18 |
+
"resample": 3,
|
19 |
+
"size": 224
|
20 |
+
}
|
checkpoints/ootd/model_index.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "OotdPipeline",
|
3 |
+
"_diffusers_version": "0.24.0.dev0",
|
4 |
+
"_name_or_path": "/home/aigc/levi/OOTDemo/Checkpoints/OOTDiffusion",
|
5 |
+
"feature_extractor": [
|
6 |
+
"transformers",
|
7 |
+
"CLIPImageProcessor"
|
8 |
+
],
|
9 |
+
"requires_safety_checker": true,
|
10 |
+
"safety_checker": [
|
11 |
+
"stable_diffusion",
|
12 |
+
"StableDiffusionSafetyChecker"
|
13 |
+
],
|
14 |
+
"scheduler": [
|
15 |
+
"diffusers",
|
16 |
+
"PNDMScheduler"
|
17 |
+
],
|
18 |
+
"text_encoder": [
|
19 |
+
"transformers",
|
20 |
+
"CLIPTextModel"
|
21 |
+
],
|
22 |
+
"tokenizer": [
|
23 |
+
"transformers",
|
24 |
+
"CLIPTokenizer"
|
25 |
+
],
|
26 |
+
"unet_garm": [
|
27 |
+
"pipelines_ootd.unet_garm_2d_condition",
|
28 |
+
"UNetGarm2DConditionModel"
|
29 |
+
],
|
30 |
+
"unet_vton": [
|
31 |
+
"pipelines_ootd.unet_vton_2d_condition",
|
32 |
+
"UNetVton2DConditionModel"
|
33 |
+
],
|
34 |
+
"vae": [
|
35 |
+
"diffusers",
|
36 |
+
"AutoencoderKL"
|
37 |
+
]
|
38 |
+
}
|
checkpoints/ootd/ootd_dc/checkpoint-36000/unet_garm/config.json
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNetGarm2DConditionModel",
|
3 |
+
"_diffusers_version": "0.24.0.dev0",
|
4 |
+
"_name_or_path": "/home/aigc/Vton_v4/OOTDiffusion/models/ldm/stablediffusion_v15",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"addition_embed_type": null,
|
7 |
+
"addition_embed_type_num_heads": 64,
|
8 |
+
"addition_time_embed_dim": null,
|
9 |
+
"attention_head_dim": 8,
|
10 |
+
"attention_type": "default",
|
11 |
+
"block_out_channels": [
|
12 |
+
320,
|
13 |
+
640,
|
14 |
+
1280,
|
15 |
+
1280
|
16 |
+
],
|
17 |
+
"center_input_sample": false,
|
18 |
+
"class_embed_type": null,
|
19 |
+
"class_embeddings_concat": false,
|
20 |
+
"conv_in_kernel": 3,
|
21 |
+
"conv_out_kernel": 3,
|
22 |
+
"cross_attention_dim": 768,
|
23 |
+
"cross_attention_norm": null,
|
24 |
+
"down_block_types": [
|
25 |
+
"CrossAttnDownBlock2D",
|
26 |
+
"CrossAttnDownBlock2D",
|
27 |
+
"CrossAttnDownBlock2D",
|
28 |
+
"DownBlock2D"
|
29 |
+
],
|
30 |
+
"downsample_padding": 1,
|
31 |
+
"dropout": 0.0,
|
32 |
+
"dual_cross_attention": false,
|
33 |
+
"encoder_hid_dim": null,
|
34 |
+
"encoder_hid_dim_type": null,
|
35 |
+
"flip_sin_to_cos": true,
|
36 |
+
"freq_shift": 0,
|
37 |
+
"in_channels": 4,
|
38 |
+
"layers_per_block": 2,
|
39 |
+
"mid_block_only_cross_attention": null,
|
40 |
+
"mid_block_scale_factor": 1,
|
41 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
42 |
+
"norm_eps": 1e-05,
|
43 |
+
"norm_num_groups": 32,
|
44 |
+
"num_attention_heads": null,
|
45 |
+
"num_class_embeds": null,
|
46 |
+
"only_cross_attention": false,
|
47 |
+
"out_channels": 4,
|
48 |
+
"projection_class_embeddings_input_dim": null,
|
49 |
+
"resnet_out_scale_factor": 1.0,
|
50 |
+
"resnet_skip_time_act": false,
|
51 |
+
"resnet_time_scale_shift": "default",
|
52 |
+
"reverse_transformer_layers_per_block": null,
|
53 |
+
"sample_size": 64,
|
54 |
+
"time_cond_proj_dim": null,
|
55 |
+
"time_embedding_act_fn": null,
|
56 |
+
"time_embedding_dim": null,
|
57 |
+
"time_embedding_type": "positional",
|
58 |
+
"timestep_post_act": null,
|
59 |
+
"transformer_layers_per_block": 1,
|
60 |
+
"up_block_types": [
|
61 |
+
"UpBlock2D",
|
62 |
+
"CrossAttnUpBlock2D",
|
63 |
+
"CrossAttnUpBlock2D",
|
64 |
+
"CrossAttnUpBlock2D"
|
65 |
+
],
|
66 |
+
"upcast_attention": false,
|
67 |
+
"use_linear_projection": false
|
68 |
+
}
|
checkpoints/ootd/ootd_dc/checkpoint-36000/unet_garm/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78b0771e1c8dba8a02eb5e8b39f20cbab0c2722bc73696fb7e2d6278f70e6f3d
|
3 |
+
size 3438167536
|
checkpoints/ootd/ootd_dc/checkpoint-36000/unet_vton/config.json
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNetVton2DConditionModel",
|
3 |
+
"_diffusers_version": "0.24.0.dev0",
|
4 |
+
"_name_or_path": "/home/aigc/Vton_v4/OOTDiffusion/models/ldm/stablediffusion_v15",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"addition_embed_type": null,
|
7 |
+
"addition_embed_type_num_heads": 64,
|
8 |
+
"addition_time_embed_dim": null,
|
9 |
+
"attention_head_dim": 8,
|
10 |
+
"attention_type": "default",
|
11 |
+
"block_out_channels": [
|
12 |
+
320,
|
13 |
+
640,
|
14 |
+
1280,
|
15 |
+
1280
|
16 |
+
],
|
17 |
+
"center_input_sample": false,
|
18 |
+
"class_embed_type": null,
|
19 |
+
"class_embeddings_concat": false,
|
20 |
+
"conv_in_kernel": 3,
|
21 |
+
"conv_out_kernel": 3,
|
22 |
+
"cross_attention_dim": 768,
|
23 |
+
"cross_attention_norm": null,
|
24 |
+
"down_block_types": [
|
25 |
+
"CrossAttnDownBlock2D",
|
26 |
+
"CrossAttnDownBlock2D",
|
27 |
+
"CrossAttnDownBlock2D",
|
28 |
+
"DownBlock2D"
|
29 |
+
],
|
30 |
+
"downsample_padding": 1,
|
31 |
+
"dropout": 0.0,
|
32 |
+
"dual_cross_attention": false,
|
33 |
+
"encoder_hid_dim": null,
|
34 |
+
"encoder_hid_dim_type": null,
|
35 |
+
"flip_sin_to_cos": true,
|
36 |
+
"freq_shift": 0,
|
37 |
+
"in_channels": 8,
|
38 |
+
"layers_per_block": 2,
|
39 |
+
"mid_block_only_cross_attention": null,
|
40 |
+
"mid_block_scale_factor": 1,
|
41 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
42 |
+
"norm_eps": 1e-05,
|
43 |
+
"norm_num_groups": 32,
|
44 |
+
"num_attention_heads": null,
|
45 |
+
"num_class_embeds": null,
|
46 |
+
"only_cross_attention": false,
|
47 |
+
"out_channels": 4,
|
48 |
+
"projection_class_embeddings_input_dim": null,
|
49 |
+
"resnet_out_scale_factor": 1.0,
|
50 |
+
"resnet_skip_time_act": false,
|
51 |
+
"resnet_time_scale_shift": "default",
|
52 |
+
"reverse_transformer_layers_per_block": null,
|
53 |
+
"sample_size": 64,
|
54 |
+
"time_cond_proj_dim": null,
|
55 |
+
"time_embedding_act_fn": null,
|
56 |
+
"time_embedding_dim": null,
|
57 |
+
"time_embedding_type": "positional",
|
58 |
+
"timestep_post_act": null,
|
59 |
+
"transformer_layers_per_block": 1,
|
60 |
+
"up_block_types": [
|
61 |
+
"UpBlock2D",
|
62 |
+
"CrossAttnUpBlock2D",
|
63 |
+
"CrossAttnUpBlock2D",
|
64 |
+
"CrossAttnUpBlock2D"
|
65 |
+
],
|
66 |
+
"upcast_attention": false,
|
67 |
+
"use_linear_projection": false
|
68 |
+
}
|
checkpoints/ootd/ootd_dc/checkpoint-36000/unet_vton/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b3cb1398172757fe1f49c130d104ec4da8d20d2132958dfff0748a2b6a7506b
|
3 |
+
size 3438213624
|
checkpoints/ootd/ootd_hd/checkpoint-36000/unet_garm/config.json
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNetGarm2DConditionModel",
|
3 |
+
"_diffusers_version": "0.24.0.dev0",
|
4 |
+
"_name_or_path": "/home/aigc/Vton_v4/OOTDiffusion/models/ldm/stablediffusion_v15",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"addition_embed_type": null,
|
7 |
+
"addition_embed_type_num_heads": 64,
|
8 |
+
"addition_time_embed_dim": null,
|
9 |
+
"attention_head_dim": 8,
|
10 |
+
"attention_type": "default",
|
11 |
+
"block_out_channels": [
|
12 |
+
320,
|
13 |
+
640,
|
14 |
+
1280,
|
15 |
+
1280
|
16 |
+
],
|
17 |
+
"center_input_sample": false,
|
18 |
+
"class_embed_type": null,
|
19 |
+
"class_embeddings_concat": false,
|
20 |
+
"conv_in_kernel": 3,
|
21 |
+
"conv_out_kernel": 3,
|
22 |
+
"cross_attention_dim": 768,
|
23 |
+
"cross_attention_norm": null,
|
24 |
+
"down_block_types": [
|
25 |
+
"CrossAttnDownBlock2D",
|
26 |
+
"CrossAttnDownBlock2D",
|
27 |
+
"CrossAttnDownBlock2D",
|
28 |
+
"DownBlock2D"
|
29 |
+
],
|
30 |
+
"downsample_padding": 1,
|
31 |
+
"dropout": 0.0,
|
32 |
+
"dual_cross_attention": false,
|
33 |
+
"encoder_hid_dim": null,
|
34 |
+
"encoder_hid_dim_type": null,
|
35 |
+
"flip_sin_to_cos": true,
|
36 |
+
"freq_shift": 0,
|
37 |
+
"in_channels": 4,
|
38 |
+
"layers_per_block": 2,
|
39 |
+
"mid_block_only_cross_attention": null,
|
40 |
+
"mid_block_scale_factor": 1,
|
41 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
42 |
+
"norm_eps": 1e-05,
|
43 |
+
"norm_num_groups": 32,
|
44 |
+
"num_attention_heads": null,
|
45 |
+
"num_class_embeds": null,
|
46 |
+
"only_cross_attention": false,
|
47 |
+
"out_channels": 4,
|
48 |
+
"projection_class_embeddings_input_dim": null,
|
49 |
+
"resnet_out_scale_factor": 1.0,
|
50 |
+
"resnet_skip_time_act": false,
|
51 |
+
"resnet_time_scale_shift": "default",
|
52 |
+
"reverse_transformer_layers_per_block": null,
|
53 |
+
"sample_size": 64,
|
54 |
+
"time_cond_proj_dim": null,
|
55 |
+
"time_embedding_act_fn": null,
|
56 |
+
"time_embedding_dim": null,
|
57 |
+
"time_embedding_type": "positional",
|
58 |
+
"timestep_post_act": null,
|
59 |
+
"transformer_layers_per_block": 1,
|
60 |
+
"up_block_types": [
|
61 |
+
"UpBlock2D",
|
62 |
+
"CrossAttnUpBlock2D",
|
63 |
+
"CrossAttnUpBlock2D",
|
64 |
+
"CrossAttnUpBlock2D"
|
65 |
+
],
|
66 |
+
"upcast_attention": false,
|
67 |
+
"use_linear_projection": false
|
68 |
+
}
|
checkpoints/ootd/ootd_hd/checkpoint-36000/unet_garm/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dea03c6b3339f13e1432711608d5c7ac83fcb9b14a430aee52b0015834ba41da
|
3 |
+
size 3438167536
|
checkpoints/ootd/ootd_hd/checkpoint-36000/unet_vton/config.json
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNetVton2DConditionModel",
|
3 |
+
"_diffusers_version": "0.24.0.dev0",
|
4 |
+
"_name_or_path": "/home/aigc/Vton_v4/OOTDiffusion/models/ldm/stablediffusion_v15",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"addition_embed_type": null,
|
7 |
+
"addition_embed_type_num_heads": 64,
|
8 |
+
"addition_time_embed_dim": null,
|
9 |
+
"attention_head_dim": 8,
|
10 |
+
"attention_type": "default",
|
11 |
+
"block_out_channels": [
|
12 |
+
320,
|
13 |
+
640,
|
14 |
+
1280,
|
15 |
+
1280
|
16 |
+
],
|
17 |
+
"center_input_sample": false,
|
18 |
+
"class_embed_type": null,
|
19 |
+
"class_embeddings_concat": false,
|
20 |
+
"conv_in_kernel": 3,
|
21 |
+
"conv_out_kernel": 3,
|
22 |
+
"cross_attention_dim": 768,
|
23 |
+
"cross_attention_norm": null,
|
24 |
+
"down_block_types": [
|
25 |
+
"CrossAttnDownBlock2D",
|
26 |
+
"CrossAttnDownBlock2D",
|
27 |
+
"CrossAttnDownBlock2D",
|
28 |
+
"DownBlock2D"
|
29 |
+
],
|
30 |
+
"downsample_padding": 1,
|
31 |
+
"dropout": 0.0,
|
32 |
+
"dual_cross_attention": false,
|
33 |
+
"encoder_hid_dim": null,
|
34 |
+
"encoder_hid_dim_type": null,
|
35 |
+
"flip_sin_to_cos": true,
|
36 |
+
"freq_shift": 0,
|
37 |
+
"in_channels": 8,
|
38 |
+
"layers_per_block": 2,
|
39 |
+
"mid_block_only_cross_attention": null,
|
40 |
+
"mid_block_scale_factor": 1,
|
41 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
42 |
+
"norm_eps": 1e-05,
|
43 |
+
"norm_num_groups": 32,
|
44 |
+
"num_attention_heads": null,
|
45 |
+
"num_class_embeds": null,
|
46 |
+
"only_cross_attention": false,
|
47 |
+
"out_channels": 4,
|
48 |
+
"projection_class_embeddings_input_dim": null,
|
49 |
+
"resnet_out_scale_factor": 1.0,
|
50 |
+
"resnet_skip_time_act": false,
|
51 |
+
"resnet_time_scale_shift": "default",
|
52 |
+
"reverse_transformer_layers_per_block": null,
|
53 |
+
"sample_size": 64,
|
54 |
+
"time_cond_proj_dim": null,
|
55 |
+
"time_embedding_act_fn": null,
|
56 |
+
"time_embedding_dim": null,
|
57 |
+
"time_embedding_type": "positional",
|
58 |
+
"timestep_post_act": null,
|
59 |
+
"transformer_layers_per_block": 1,
|
60 |
+
"up_block_types": [
|
61 |
+
"UpBlock2D",
|
62 |
+
"CrossAttnUpBlock2D",
|
63 |
+
"CrossAttnUpBlock2D",
|
64 |
+
"CrossAttnUpBlock2D"
|
65 |
+
],
|
66 |
+
"upcast_attention": false,
|
67 |
+
"use_linear_projection": false
|
68 |
+
}
|
checkpoints/ootd/ootd_hd/checkpoint-36000/unet_vton/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3587b5025565060842eac78c74f87fc06d8b82c2b51d9938a492d42858679fe
|
3 |
+
size 3438213624
|
checkpoints/ootd/scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DPMSolverMultistepScheduler",
|
3 |
+
"_diffusers_version": "0.20.0.dev0",
|
4 |
+
"algorithm_type": "dpmsolver++",
|
5 |
+
"beta_end": 0.012,
|
6 |
+
"beta_schedule": "scaled_linear",
|
7 |
+
"beta_start": 0.00085,
|
8 |
+
"clip_sample": false,
|
9 |
+
"dynamic_thresholding_ratio": 0.995,
|
10 |
+
"lambda_min_clipped": -Infinity,
|
11 |
+
"lower_order_final": true,
|
12 |
+
"num_train_timesteps": 1000,
|
13 |
+
"prediction_type": "epsilon",
|
14 |
+
"sample_max_value": 1.0,
|
15 |
+
"set_alpha_to_one": false,
|
16 |
+
"skip_prk_steps": true,
|
17 |
+
"solver_order": 2,
|
18 |
+
"solver_type": "midpoint",
|
19 |
+
"steps_offset": 1,
|
20 |
+
"thresholding": false,
|
21 |
+
"timestep_spacing": "leading",
|
22 |
+
"trained_betas": null,
|
23 |
+
"use_karras_sigmas": true,
|
24 |
+
"variance_type": null
|
25 |
+
}
|
checkpoints/ootd/text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/clip-vit-large-patch14",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "quick_gelu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 768,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.22.0.dev0",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
checkpoints/ootd/text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:770a47a9ffdcfda0b05506a7888ed714d06131d60267e6cf52765d61cf59fd67
|
3 |
+
size 492305335
|
checkpoints/ootd/tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoints/ootd/tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoints/ootd/tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"do_lower_case": true,
|
12 |
+
"eos_token": {
|
13 |
+
"__type": "AddedToken",
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"errors": "replace",
|
21 |
+
"model_max_length": 77,
|
22 |
+
"name_or_path": "openai/clip-vit-large-patch14",
|
23 |
+
"pad_token": "<|endoftext|>",
|
24 |
+
"special_tokens_map_file": "./special_tokens_map.json",
|
25 |
+
"tokenizer_class": "CLIPTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<|endoftext|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
checkpoints/ootd/tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoints/ootd/vae/config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.20.0.dev0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
512,
|
9 |
+
512
|
10 |
+
],
|
11 |
+
"down_block_types": [
|
12 |
+
"DownEncoderBlock2D",
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D"
|
16 |
+
],
|
17 |
+
"force_upcast": true,
|
18 |
+
"in_channels": 3,
|
19 |
+
"latent_channels": 4,
|
20 |
+
"layers_per_block": 2,
|
21 |
+
"norm_num_groups": 32,
|
22 |
+
"out_channels": 3,
|
23 |
+
"sample_size": 512,
|
24 |
+
"scaling_factor": 0.18215,
|
25 |
+
"up_block_types": [
|
26 |
+
"UpDecoderBlock2D",
|
27 |
+
"UpDecoderBlock2D",
|
28 |
+
"UpDecoderBlock2D",
|
29 |
+
"UpDecoderBlock2D"
|
30 |
+
]
|
31 |
+
}
|
checkpoints/ootd/vae/diffusion_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9814753f897cd32db41ec0bf0c574f6f44b39340103df9f4778b18565946d8b1
|
3 |
+
size 334712113
|
ootd/inference_ootd.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pdb
|
2 |
+
from pathlib import Path
|
3 |
+
import sys
|
4 |
+
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute()
|
5 |
+
sys.path.insert(0, str(PROJECT_ROOT))
|
6 |
+
import os
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
import cv2
|
12 |
+
|
13 |
+
import random
|
14 |
+
import time
|
15 |
+
import pdb
|
16 |
+
|
17 |
+
from pipelines_ootd.pipeline_ootd import OotdPipeline
|
18 |
+
from pipelines_ootd.unet_garm_2d_condition import UNetGarm2DConditionModel
|
19 |
+
from pipelines_ootd.unet_vton_2d_condition import UNetVton2DConditionModel
|
20 |
+
from diffusers import UniPCMultistepScheduler
|
21 |
+
from diffusers import AutoencoderKL
|
22 |
+
|
23 |
+
import torch.nn as nn
|
24 |
+
import torch.nn.functional as F
|
25 |
+
from transformers import AutoProcessor, CLIPVisionModelWithProjection
|
26 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
27 |
+
|
28 |
+
VIT_PATH = "openai/clip-vit-large-patch14"
|
29 |
+
VAE_PATH = "./checkpoints/ootd"
|
30 |
+
UNET_PATH = "./checkpoints/ootd/ootd_hd/checkpoint-36000"
|
31 |
+
MODEL_PATH = "./checkpoints/ootd"
|
32 |
+
|
33 |
+
class OOTDiffusion:
|
34 |
+
|
35 |
+
def __init__(self, gpu_id):
|
36 |
+
self.gpu_id = 'cuda:' + str(gpu_id)
|
37 |
+
|
38 |
+
vae = AutoencoderKL.from_pretrained(
|
39 |
+
VAE_PATH,
|
40 |
+
subfolder="vae",
|
41 |
+
torch_dtype=torch.float16,
|
42 |
+
)
|
43 |
+
|
44 |
+
unet_garm = UNetGarm2DConditionModel.from_pretrained(
|
45 |
+
UNET_PATH,
|
46 |
+
subfolder="unet_garm",
|
47 |
+
torch_dtype=torch.float16,
|
48 |
+
use_safetensors=True,
|
49 |
+
)
|
50 |
+
unet_vton = UNetVton2DConditionModel.from_pretrained(
|
51 |
+
UNET_PATH,
|
52 |
+
subfolder="unet_vton",
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
use_safetensors=True,
|
55 |
+
)
|
56 |
+
|
57 |
+
self.pipe = OotdPipeline.from_pretrained(
|
58 |
+
MODEL_PATH,
|
59 |
+
unet_garm=unet_garm,
|
60 |
+
unet_vton=unet_vton,
|
61 |
+
vae=vae,
|
62 |
+
torch_dtype=torch.float16,
|
63 |
+
variant="fp16",
|
64 |
+
use_safetensors=True,
|
65 |
+
safety_checker=None,
|
66 |
+
requires_safety_checker=False,
|
67 |
+
).to(self.gpu_id)
|
68 |
+
|
69 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
70 |
+
|
71 |
+
self.auto_processor = AutoProcessor.from_pretrained(VIT_PATH)
|
72 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(VIT_PATH).to(self.gpu_id)
|
73 |
+
|
74 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(
|
75 |
+
MODEL_PATH,
|
76 |
+
subfolder="tokenizer",
|
77 |
+
)
|
78 |
+
self.text_encoder = CLIPTextModel.from_pretrained(
|
79 |
+
MODEL_PATH,
|
80 |
+
subfolder="text_encoder",
|
81 |
+
).to(self.gpu_id)
|
82 |
+
|
83 |
+
|
84 |
+
def tokenize_captions(self, captions, max_length):
|
85 |
+
inputs = self.tokenizer(
|
86 |
+
captions, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
|
87 |
+
)
|
88 |
+
return inputs.input_ids
|
89 |
+
|
90 |
+
|
91 |
+
def __call__(self,
|
92 |
+
model_type='hd',
|
93 |
+
category='upperbody',
|
94 |
+
image_garm=None,
|
95 |
+
image_vton=None,
|
96 |
+
mask=None,
|
97 |
+
image_ori=None,
|
98 |
+
num_samples=1,
|
99 |
+
num_steps=20,
|
100 |
+
image_scale=1.0,
|
101 |
+
seed=-1,
|
102 |
+
):
|
103 |
+
if seed == -1:
|
104 |
+
random.seed(time.time())
|
105 |
+
seed = random.randint(0, 2147483647)
|
106 |
+
print('Initial seed: ' + str(seed))
|
107 |
+
generator = torch.manual_seed(seed)
|
108 |
+
|
109 |
+
with torch.no_grad():
|
110 |
+
prompt_image = self.auto_processor(images=image_garm, return_tensors="pt").to(self.gpu_id)
|
111 |
+
prompt_image = self.image_encoder(prompt_image.data['pixel_values']).image_embeds
|
112 |
+
prompt_image = prompt_image.unsqueeze(1)
|
113 |
+
if model_type == 'hd':
|
114 |
+
prompt_embeds = self.text_encoder(self.tokenize_captions([""], 2).to(self.gpu_id))[0]
|
115 |
+
prompt_embeds[:, 1:] = prompt_image[:]
|
116 |
+
elif model_type == 'dc':
|
117 |
+
prompt_embeds = self.text_encoder(self.tokenize_captions([category], 3).to(self.gpu_id))[0]
|
118 |
+
prompt_embeds = torch.cat([prompt_embeds, prompt_image], dim=1)
|
119 |
+
else:
|
120 |
+
raise ValueError("model_type must be \'hd\' or \'dc\'!")
|
121 |
+
|
122 |
+
images = self.pipe(prompt_embeds=prompt_embeds,
|
123 |
+
image_garm=image_garm,
|
124 |
+
image_vton=image_vton,
|
125 |
+
mask=mask,
|
126 |
+
image_ori=image_ori,
|
127 |
+
num_inference_steps=num_steps,
|
128 |
+
image_guidance_scale=image_scale,
|
129 |
+
num_images_per_prompt=num_samples,
|
130 |
+
generator=generator,
|
131 |
+
).images
|
132 |
+
|
133 |
+
return images
|
ootd/inference_ootd_dc.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pdb
|
2 |
+
from pathlib import Path
|
3 |
+
import sys
|
4 |
+
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute()
|
5 |
+
sys.path.insert(0, str(PROJECT_ROOT))
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
import random
|
13 |
+
import time
|
14 |
+
import pdb
|
15 |
+
|
16 |
+
from pipelines_ootd.pipeline_ootd import OotdPipeline
|
17 |
+
from pipelines_ootd.unet_garm_2d_condition import UNetGarm2DConditionModel
|
18 |
+
from pipelines_ootd.unet_vton_2d_condition import UNetVton2DConditionModel
|
19 |
+
from diffusers import UniPCMultistepScheduler
|
20 |
+
from diffusers import AutoencoderKL
|
21 |
+
|
22 |
+
import torch.nn as nn
|
23 |
+
import torch.nn.functional as F
|
24 |
+
from transformers import AutoProcessor, CLIPVisionModelWithProjection
|
25 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
26 |
+
|
27 |
+
VIT_PATH = "openai/clip-vit-large-patch14"
|
28 |
+
VAE_PATH = "./checkpoints/ootd"
|
29 |
+
UNET_PATH = "./checkpoints/ootd/ootd_dc/checkpoint-36000"
|
30 |
+
MODEL_PATH = "./checkpoints/ootd"
|
31 |
+
|
32 |
+
class OOTDiffusionDC:
|
33 |
+
|
34 |
+
def __init__(self, gpu_id):
|
35 |
+
self.gpu_id = 'cuda:' + str(gpu_id)
|
36 |
+
|
37 |
+
vae = AutoencoderKL.from_pretrained(
|
38 |
+
VAE_PATH,
|
39 |
+
subfolder="vae",
|
40 |
+
torch_dtype=torch.float16,
|
41 |
+
)
|
42 |
+
|
43 |
+
unet_garm = UNetGarm2DConditionModel.from_pretrained(
|
44 |
+
UNET_PATH,
|
45 |
+
subfolder="unet_garm",
|
46 |
+
torch_dtype=torch.float16,
|
47 |
+
use_safetensors=True,
|
48 |
+
)
|
49 |
+
unet_vton = UNetVton2DConditionModel.from_pretrained(
|
50 |
+
UNET_PATH,
|
51 |
+
subfolder="unet_vton",
|
52 |
+
torch_dtype=torch.float16,
|
53 |
+
use_safetensors=True,
|
54 |
+
)
|
55 |
+
|
56 |
+
self.pipe = OotdPipeline.from_pretrained(
|
57 |
+
MODEL_PATH,
|
58 |
+
unet_garm=unet_garm,
|
59 |
+
unet_vton=unet_vton,
|
60 |
+
vae=vae,
|
61 |
+
torch_dtype=torch.float16,
|
62 |
+
variant="fp16",
|
63 |
+
use_safetensors=True,
|
64 |
+
safety_checker=None,
|
65 |
+
requires_safety_checker=False,
|
66 |
+
).to(self.gpu_id)
|
67 |
+
|
68 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
69 |
+
|
70 |
+
self.auto_processor = AutoProcessor.from_pretrained(VIT_PATH)
|
71 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(VIT_PATH).to(self.gpu_id)
|
72 |
+
|
73 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(
|
74 |
+
MODEL_PATH,
|
75 |
+
subfolder="tokenizer",
|
76 |
+
)
|
77 |
+
self.text_encoder = CLIPTextModel.from_pretrained(
|
78 |
+
MODEL_PATH,
|
79 |
+
subfolder="text_encoder",
|
80 |
+
).to(self.gpu_id)
|
81 |
+
|
82 |
+
|
83 |
+
def tokenize_captions(self, captions, max_length):
|
84 |
+
inputs = self.tokenizer(
|
85 |
+
captions, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
|
86 |
+
)
|
87 |
+
return inputs.input_ids
|
88 |
+
|
89 |
+
|
90 |
+
def __call__(self,
|
91 |
+
model_type='hd',
|
92 |
+
category='upperbody',
|
93 |
+
image_garm=None,
|
94 |
+
image_vton=None,
|
95 |
+
mask=None,
|
96 |
+
image_ori=None,
|
97 |
+
num_samples=1,
|
98 |
+
num_steps=20,
|
99 |
+
image_scale=1.0,
|
100 |
+
seed=-1,
|
101 |
+
):
|
102 |
+
if seed == -1:
|
103 |
+
random.seed(time.time())
|
104 |
+
seed = random.randint(0, 2147483647)
|
105 |
+
print('Initial seed: ' + str(seed))
|
106 |
+
generator = torch.manual_seed(seed)
|
107 |
+
|
108 |
+
with torch.no_grad():
|
109 |
+
prompt_image = self.auto_processor(images=image_garm, return_tensors="pt").to(self.gpu_id)
|
110 |
+
prompt_image = self.image_encoder(prompt_image.data['pixel_values']).image_embeds
|
111 |
+
prompt_image = prompt_image.unsqueeze(1)
|
112 |
+
if model_type == 'hd':
|
113 |
+
prompt_embeds = self.text_encoder(self.tokenize_captions([""], 2).to(self.gpu_id))[0]
|
114 |
+
prompt_embeds[:, 1:] = prompt_image[:]
|
115 |
+
elif model_type == 'dc':
|
116 |
+
prompt_embeds = self.text_encoder(self.tokenize_captions([category], 3).to(self.gpu_id))[0]
|
117 |
+
prompt_embeds = torch.cat([prompt_embeds, prompt_image], dim=1)
|
118 |
+
else:
|
119 |
+
raise ValueError("model_type must be \'hd\' or \'dc\'!")
|
120 |
+
|
121 |
+
images = self.pipe(prompt_embeds=prompt_embeds,
|
122 |
+
image_garm=image_garm,
|
123 |
+
image_vton=image_vton,
|
124 |
+
mask=mask,
|
125 |
+
image_ori=image_ori,
|
126 |
+
num_inference_steps=num_steps,
|
127 |
+
image_guidance_scale=image_scale,
|
128 |
+
num_images_per_prompt=num_samples,
|
129 |
+
generator=generator,
|
130 |
+
).images
|
131 |
+
|
132 |
+
return images
|
ootd/inference_ootd_hd.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pdb
|
2 |
+
from pathlib import Path
|
3 |
+
import sys
|
4 |
+
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute()
|
5 |
+
sys.path.insert(0, str(PROJECT_ROOT))
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
import random
|
13 |
+
import time
|
14 |
+
import pdb
|
15 |
+
|
16 |
+
from pipelines_ootd.pipeline_ootd import OotdPipeline
|
17 |
+
from pipelines_ootd.unet_garm_2d_condition import UNetGarm2DConditionModel
|
18 |
+
from pipelines_ootd.unet_vton_2d_condition import UNetVton2DConditionModel
|
19 |
+
from diffusers import UniPCMultistepScheduler
|
20 |
+
from diffusers import AutoencoderKL
|
21 |
+
|
22 |
+
import torch.nn as nn
|
23 |
+
import torch.nn.functional as F
|
24 |
+
from transformers import AutoProcessor, CLIPVisionModelWithProjection
|
25 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
26 |
+
|
27 |
+
VIT_PATH = "openai/clip-vit-large-patch14"
|
28 |
+
VAE_PATH = "./checkpoints/ootd"
|
29 |
+
UNET_PATH = "./checkpoints/ootd/ootd_hd/checkpoint-36000"
|
30 |
+
MODEL_PATH = "./checkpoints/ootd"
|
31 |
+
|
32 |
+
class OOTDiffusionHD:
|
33 |
+
|
34 |
+
def __init__(self, gpu_id):
|
35 |
+
self.gpu_id = 'cuda:' + str(gpu_id)
|
36 |
+
|
37 |
+
vae = AutoencoderKL.from_pretrained(
|
38 |
+
VAE_PATH,
|
39 |
+
subfolder="vae",
|
40 |
+
torch_dtype=torch.float16,
|
41 |
+
)
|
42 |
+
|
43 |
+
unet_garm = UNetGarm2DConditionModel.from_pretrained(
|
44 |
+
UNET_PATH,
|
45 |
+
subfolder="unet_garm",
|
46 |
+
torch_dtype=torch.float16,
|
47 |
+
use_safetensors=True,
|
48 |
+
)
|
49 |
+
unet_vton = UNetVton2DConditionModel.from_pretrained(
|
50 |
+
UNET_PATH,
|
51 |
+
subfolder="unet_vton",
|
52 |
+
torch_dtype=torch.float16,
|
53 |
+
use_safetensors=True,
|
54 |
+
)
|
55 |
+
|
56 |
+
self.pipe = OotdPipeline.from_pretrained(
|
57 |
+
MODEL_PATH,
|
58 |
+
unet_garm=unet_garm,
|
59 |
+
unet_vton=unet_vton,
|
60 |
+
vae=vae,
|
61 |
+
torch_dtype=torch.float16,
|
62 |
+
variant="fp16",
|
63 |
+
use_safetensors=True,
|
64 |
+
safety_checker=None,
|
65 |
+
requires_safety_checker=False,
|
66 |
+
).to(self.gpu_id)
|
67 |
+
|
68 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
69 |
+
|
70 |
+
self.auto_processor = AutoProcessor.from_pretrained(VIT_PATH)
|
71 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(VIT_PATH).to(self.gpu_id)
|
72 |
+
|
73 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(
|
74 |
+
MODEL_PATH,
|
75 |
+
subfolder="tokenizer",
|
76 |
+
)
|
77 |
+
self.text_encoder = CLIPTextModel.from_pretrained(
|
78 |
+
MODEL_PATH,
|
79 |
+
subfolder="text_encoder",
|
80 |
+
).to(self.gpu_id)
|
81 |
+
|
82 |
+
|
83 |
+
def tokenize_captions(self, captions, max_length):
|
84 |
+
inputs = self.tokenizer(
|
85 |
+
captions, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
|
86 |
+
)
|
87 |
+
return inputs.input_ids
|
88 |
+
|
89 |
+
|
90 |
+
def __call__(self,
|
91 |
+
model_type='hd',
|
92 |
+
category='upperbody',
|
93 |
+
image_garm=None,
|
94 |
+
image_vton=None,
|
95 |
+
mask=None,
|
96 |
+
image_ori=None,
|
97 |
+
num_samples=1,
|
98 |
+
num_steps=20,
|
99 |
+
image_scale=1.0,
|
100 |
+
seed=-1,
|
101 |
+
):
|
102 |
+
if seed == -1:
|
103 |
+
random.seed(time.time())
|
104 |
+
seed = random.randint(0, 2147483647)
|
105 |
+
print('Initial seed: ' + str(seed))
|
106 |
+
generator = torch.manual_seed(seed)
|
107 |
+
|
108 |
+
with torch.no_grad():
|
109 |
+
prompt_image = self.auto_processor(images=image_garm, return_tensors="pt").to(self.gpu_id)
|
110 |
+
prompt_image = self.image_encoder(prompt_image.data['pixel_values']).image_embeds
|
111 |
+
prompt_image = prompt_image.unsqueeze(1)
|
112 |
+
if model_type == 'hd':
|
113 |
+
prompt_embeds = self.text_encoder(self.tokenize_captions([""], 2).to(self.gpu_id))[0]
|
114 |
+
prompt_embeds[:, 1:] = prompt_image[:]
|
115 |
+
elif model_type == 'dc':
|
116 |
+
prompt_embeds = self.text_encoder(self.tokenize_captions([category], 3).to(self.gpu_id))[0]
|
117 |
+
prompt_embeds = torch.cat([prompt_embeds, prompt_image], dim=1)
|
118 |
+
else:
|
119 |
+
raise ValueError("model_type must be \'hd\' or \'dc\'!")
|
120 |
+
|
121 |
+
images = self.pipe(prompt_embeds=prompt_embeds,
|
122 |
+
image_garm=image_garm,
|
123 |
+
image_vton=image_vton,
|
124 |
+
mask=mask,
|
125 |
+
image_ori=image_ori,
|
126 |
+
num_inference_steps=num_steps,
|
127 |
+
image_guidance_scale=image_scale,
|
128 |
+
num_images_per_prompt=num_samples,
|
129 |
+
generator=generator,
|
130 |
+
).images
|
131 |
+
|
132 |
+
return images
|
ootd/pipelines_ootd/attention_garm.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
+
from typing import Any, Dict, Optional
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.utils import USE_PEFT_BACKEND
|
22 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
23 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
24 |
+
from diffusers.models.attention_processor import Attention
|
25 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
26 |
+
from diffusers.models.lora import LoRACompatibleLinear
|
27 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero
|
28 |
+
|
29 |
+
|
30 |
+
@maybe_allow_in_graph
|
31 |
+
class GatedSelfAttentionDense(nn.Module):
|
32 |
+
r"""
|
33 |
+
A gated self-attention dense layer that combines visual features and object features.
|
34 |
+
|
35 |
+
Parameters:
|
36 |
+
query_dim (`int`): The number of channels in the query.
|
37 |
+
context_dim (`int`): The number of channels in the context.
|
38 |
+
n_heads (`int`): The number of heads to use for attention.
|
39 |
+
d_head (`int`): The number of channels in each head.
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
43 |
+
super().__init__()
|
44 |
+
|
45 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
46 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
47 |
+
|
48 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
49 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
50 |
+
|
51 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
52 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
53 |
+
|
54 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
55 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
56 |
+
|
57 |
+
self.enabled = True
|
58 |
+
|
59 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
60 |
+
if not self.enabled:
|
61 |
+
return x
|
62 |
+
|
63 |
+
n_visual = x.shape[1]
|
64 |
+
objs = self.linear(objs)
|
65 |
+
|
66 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
67 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
68 |
+
|
69 |
+
return x
|
70 |
+
|
71 |
+
|
72 |
+
@maybe_allow_in_graph
|
73 |
+
class BasicTransformerBlock(nn.Module):
|
74 |
+
r"""
|
75 |
+
A basic Transformer block.
|
76 |
+
|
77 |
+
Parameters:
|
78 |
+
dim (`int`): The number of channels in the input and output.
|
79 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
80 |
+
attention_head_dim (`int`): The number of channels in each head.
|
81 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
82 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
83 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
84 |
+
num_embeds_ada_norm (:
|
85 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
86 |
+
attention_bias (:
|
87 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
88 |
+
only_cross_attention (`bool`, *optional*):
|
89 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
90 |
+
double_self_attention (`bool`, *optional*):
|
91 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
92 |
+
upcast_attention (`bool`, *optional*):
|
93 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
94 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
95 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
96 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
97 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
98 |
+
final_dropout (`bool` *optional*, defaults to False):
|
99 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
100 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
101 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
102 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
103 |
+
The type of positional embeddings to apply to.
|
104 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
105 |
+
The maximum number of positional embeddings to apply.
|
106 |
+
"""
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
dim: int,
|
111 |
+
num_attention_heads: int,
|
112 |
+
attention_head_dim: int,
|
113 |
+
dropout=0.0,
|
114 |
+
cross_attention_dim: Optional[int] = None,
|
115 |
+
activation_fn: str = "geglu",
|
116 |
+
num_embeds_ada_norm: Optional[int] = None,
|
117 |
+
attention_bias: bool = False,
|
118 |
+
only_cross_attention: bool = False,
|
119 |
+
double_self_attention: bool = False,
|
120 |
+
upcast_attention: bool = False,
|
121 |
+
norm_elementwise_affine: bool = True,
|
122 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
123 |
+
norm_eps: float = 1e-5,
|
124 |
+
final_dropout: bool = False,
|
125 |
+
attention_type: str = "default",
|
126 |
+
positional_embeddings: Optional[str] = None,
|
127 |
+
num_positional_embeddings: Optional[int] = None,
|
128 |
+
):
|
129 |
+
super().__init__()
|
130 |
+
self.only_cross_attention = only_cross_attention
|
131 |
+
|
132 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
133 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
134 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
135 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
136 |
+
|
137 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
138 |
+
raise ValueError(
|
139 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
140 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
141 |
+
)
|
142 |
+
|
143 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
144 |
+
raise ValueError(
|
145 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
146 |
+
)
|
147 |
+
|
148 |
+
if positional_embeddings == "sinusoidal":
|
149 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
150 |
+
else:
|
151 |
+
self.pos_embed = None
|
152 |
+
|
153 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
154 |
+
# 1. Self-Attn
|
155 |
+
if self.use_ada_layer_norm:
|
156 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
157 |
+
elif self.use_ada_layer_norm_zero:
|
158 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
159 |
+
else:
|
160 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
161 |
+
|
162 |
+
self.attn1 = Attention(
|
163 |
+
query_dim=dim,
|
164 |
+
heads=num_attention_heads,
|
165 |
+
dim_head=attention_head_dim,
|
166 |
+
dropout=dropout,
|
167 |
+
bias=attention_bias,
|
168 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
169 |
+
upcast_attention=upcast_attention,
|
170 |
+
)
|
171 |
+
|
172 |
+
# 2. Cross-Attn
|
173 |
+
if cross_attention_dim is not None or double_self_attention:
|
174 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
175 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
176 |
+
# the second cross attention block.
|
177 |
+
self.norm2 = (
|
178 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
179 |
+
if self.use_ada_layer_norm
|
180 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
181 |
+
)
|
182 |
+
self.attn2 = Attention(
|
183 |
+
query_dim=dim,
|
184 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
185 |
+
heads=num_attention_heads,
|
186 |
+
dim_head=attention_head_dim,
|
187 |
+
dropout=dropout,
|
188 |
+
bias=attention_bias,
|
189 |
+
upcast_attention=upcast_attention,
|
190 |
+
) # is self-attn if encoder_hidden_states is none
|
191 |
+
else:
|
192 |
+
self.norm2 = None
|
193 |
+
self.attn2 = None
|
194 |
+
|
195 |
+
# 3. Feed-forward
|
196 |
+
if not self.use_ada_layer_norm_single:
|
197 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
198 |
+
|
199 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
200 |
+
|
201 |
+
# 4. Fuser
|
202 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
203 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
204 |
+
|
205 |
+
# 5. Scale-shift for PixArt-Alpha.
|
206 |
+
if self.use_ada_layer_norm_single:
|
207 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
208 |
+
|
209 |
+
# let chunk size default to None
|
210 |
+
self._chunk_size = None
|
211 |
+
self._chunk_dim = 0
|
212 |
+
|
213 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
214 |
+
# Sets chunk feed-forward
|
215 |
+
self._chunk_size = chunk_size
|
216 |
+
self._chunk_dim = dim
|
217 |
+
|
218 |
+
def forward(
|
219 |
+
self,
|
220 |
+
hidden_states: torch.FloatTensor,
|
221 |
+
spatial_attn_inputs = [],
|
222 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
223 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
224 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
225 |
+
timestep: Optional[torch.LongTensor] = None,
|
226 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
227 |
+
class_labels: Optional[torch.LongTensor] = None,
|
228 |
+
) -> torch.FloatTensor:
|
229 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
230 |
+
# 0. Self-Attention
|
231 |
+
batch_size = hidden_states.shape[0]
|
232 |
+
|
233 |
+
spatial_attn_input = hidden_states
|
234 |
+
spatial_attn_inputs.append(spatial_attn_input)
|
235 |
+
|
236 |
+
if self.use_ada_layer_norm:
|
237 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
238 |
+
elif self.use_ada_layer_norm_zero:
|
239 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
240 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
241 |
+
)
|
242 |
+
elif self.use_layer_norm:
|
243 |
+
norm_hidden_states = self.norm1(hidden_states)
|
244 |
+
elif self.use_ada_layer_norm_single:
|
245 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
246 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
247 |
+
).chunk(6, dim=1)
|
248 |
+
norm_hidden_states = self.norm1(hidden_states)
|
249 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
250 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
251 |
+
else:
|
252 |
+
raise ValueError("Incorrect norm used")
|
253 |
+
|
254 |
+
if self.pos_embed is not None:
|
255 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
256 |
+
|
257 |
+
# 1. Retrieve lora scale.
|
258 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
259 |
+
|
260 |
+
# 2. Prepare GLIGEN inputs
|
261 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
262 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
263 |
+
|
264 |
+
attn_output = self.attn1(
|
265 |
+
norm_hidden_states,
|
266 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
267 |
+
attention_mask=attention_mask,
|
268 |
+
**cross_attention_kwargs,
|
269 |
+
)
|
270 |
+
if self.use_ada_layer_norm_zero:
|
271 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
272 |
+
elif self.use_ada_layer_norm_single:
|
273 |
+
attn_output = gate_msa * attn_output
|
274 |
+
|
275 |
+
hidden_states = attn_output + hidden_states
|
276 |
+
if hidden_states.ndim == 4:
|
277 |
+
hidden_states = hidden_states.squeeze(1)
|
278 |
+
|
279 |
+
# 2.5 GLIGEN Control
|
280 |
+
if gligen_kwargs is not None:
|
281 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
282 |
+
|
283 |
+
# 3. Cross-Attention
|
284 |
+
if self.attn2 is not None:
|
285 |
+
if self.use_ada_layer_norm:
|
286 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
287 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
288 |
+
norm_hidden_states = self.norm2(hidden_states)
|
289 |
+
elif self.use_ada_layer_norm_single:
|
290 |
+
# For PixArt norm2 isn't applied here:
|
291 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
292 |
+
norm_hidden_states = hidden_states
|
293 |
+
else:
|
294 |
+
raise ValueError("Incorrect norm")
|
295 |
+
|
296 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
297 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
298 |
+
|
299 |
+
attn_output = self.attn2(
|
300 |
+
norm_hidden_states,
|
301 |
+
encoder_hidden_states=encoder_hidden_states,
|
302 |
+
attention_mask=encoder_attention_mask,
|
303 |
+
**cross_attention_kwargs,
|
304 |
+
)
|
305 |
+
hidden_states = attn_output + hidden_states
|
306 |
+
|
307 |
+
# 4. Feed-forward
|
308 |
+
if not self.use_ada_layer_norm_single:
|
309 |
+
norm_hidden_states = self.norm3(hidden_states)
|
310 |
+
|
311 |
+
if self.use_ada_layer_norm_zero:
|
312 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
313 |
+
|
314 |
+
if self.use_ada_layer_norm_single:
|
315 |
+
norm_hidden_states = self.norm2(hidden_states)
|
316 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
317 |
+
|
318 |
+
if self._chunk_size is not None:
|
319 |
+
# "feed_forward_chunk_size" can be used to save memory
|
320 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
321 |
+
raise ValueError(
|
322 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
323 |
+
)
|
324 |
+
|
325 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
326 |
+
ff_output = torch.cat(
|
327 |
+
[
|
328 |
+
self.ff(hid_slice, scale=lora_scale)
|
329 |
+
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
|
330 |
+
],
|
331 |
+
dim=self._chunk_dim,
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
335 |
+
|
336 |
+
if self.use_ada_layer_norm_zero:
|
337 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
338 |
+
elif self.use_ada_layer_norm_single:
|
339 |
+
ff_output = gate_mlp * ff_output
|
340 |
+
|
341 |
+
hidden_states = ff_output + hidden_states
|
342 |
+
if hidden_states.ndim == 4:
|
343 |
+
hidden_states = hidden_states.squeeze(1)
|
344 |
+
|
345 |
+
return hidden_states, spatial_attn_inputs
|
346 |
+
|
347 |
+
|
348 |
+
class FeedForward(nn.Module):
|
349 |
+
r"""
|
350 |
+
A feed-forward layer.
|
351 |
+
|
352 |
+
Parameters:
|
353 |
+
dim (`int`): The number of channels in the input.
|
354 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
355 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
356 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
357 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
358 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
359 |
+
"""
|
360 |
+
|
361 |
+
def __init__(
|
362 |
+
self,
|
363 |
+
dim: int,
|
364 |
+
dim_out: Optional[int] = None,
|
365 |
+
mult: int = 4,
|
366 |
+
dropout: float = 0.0,
|
367 |
+
activation_fn: str = "geglu",
|
368 |
+
final_dropout: bool = False,
|
369 |
+
):
|
370 |
+
super().__init__()
|
371 |
+
inner_dim = int(dim * mult)
|
372 |
+
dim_out = dim_out if dim_out is not None else dim
|
373 |
+
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
|
374 |
+
|
375 |
+
if activation_fn == "gelu":
|
376 |
+
act_fn = GELU(dim, inner_dim)
|
377 |
+
if activation_fn == "gelu-approximate":
|
378 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
379 |
+
elif activation_fn == "geglu":
|
380 |
+
act_fn = GEGLU(dim, inner_dim)
|
381 |
+
elif activation_fn == "geglu-approximate":
|
382 |
+
act_fn = ApproximateGELU(dim, inner_dim)
|
383 |
+
|
384 |
+
self.net = nn.ModuleList([])
|
385 |
+
# project in
|
386 |
+
self.net.append(act_fn)
|
387 |
+
# project dropout
|
388 |
+
self.net.append(nn.Dropout(dropout))
|
389 |
+
# project out
|
390 |
+
self.net.append(linear_cls(inner_dim, dim_out))
|
391 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
392 |
+
if final_dropout:
|
393 |
+
self.net.append(nn.Dropout(dropout))
|
394 |
+
|
395 |
+
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
|
396 |
+
compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
|
397 |
+
for module in self.net:
|
398 |
+
if isinstance(module, compatible_cls):
|
399 |
+
hidden_states = module(hidden_states, scale)
|
400 |
+
else:
|
401 |
+
hidden_states = module(hidden_states)
|
402 |
+
return hidden_states
|
ootd/pipelines_ootd/attention_vton.py
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
+
from typing import Any, Dict, Optional
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.utils import USE_PEFT_BACKEND
|
22 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
23 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
24 |
+
from diffusers.models.attention_processor import Attention
|
25 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
26 |
+
from diffusers.models.lora import LoRACompatibleLinear
|
27 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero
|
28 |
+
|
29 |
+
|
30 |
+
@maybe_allow_in_graph
|
31 |
+
class GatedSelfAttentionDense(nn.Module):
|
32 |
+
r"""
|
33 |
+
A gated self-attention dense layer that combines visual features and object features.
|
34 |
+
|
35 |
+
Parameters:
|
36 |
+
query_dim (`int`): The number of channels in the query.
|
37 |
+
context_dim (`int`): The number of channels in the context.
|
38 |
+
n_heads (`int`): The number of heads to use for attention.
|
39 |
+
d_head (`int`): The number of channels in each head.
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
43 |
+
super().__init__()
|
44 |
+
|
45 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
46 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
47 |
+
|
48 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
49 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
50 |
+
|
51 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
52 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
53 |
+
|
54 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
55 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
56 |
+
|
57 |
+
self.enabled = True
|
58 |
+
|
59 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
60 |
+
if not self.enabled:
|
61 |
+
return x
|
62 |
+
|
63 |
+
n_visual = x.shape[1]
|
64 |
+
objs = self.linear(objs)
|
65 |
+
|
66 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
67 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
68 |
+
|
69 |
+
return x
|
70 |
+
|
71 |
+
|
72 |
+
@maybe_allow_in_graph
|
73 |
+
class BasicTransformerBlock(nn.Module):
|
74 |
+
r"""
|
75 |
+
A basic Transformer block.
|
76 |
+
|
77 |
+
Parameters:
|
78 |
+
dim (`int`): The number of channels in the input and output.
|
79 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
80 |
+
attention_head_dim (`int`): The number of channels in each head.
|
81 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
82 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
83 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
84 |
+
num_embeds_ada_norm (:
|
85 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
86 |
+
attention_bias (:
|
87 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
88 |
+
only_cross_attention (`bool`, *optional*):
|
89 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
90 |
+
double_self_attention (`bool`, *optional*):
|
91 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
92 |
+
upcast_attention (`bool`, *optional*):
|
93 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
94 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
95 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
96 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
97 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
98 |
+
final_dropout (`bool` *optional*, defaults to False):
|
99 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
100 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
101 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
102 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
103 |
+
The type of positional embeddings to apply to.
|
104 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
105 |
+
The maximum number of positional embeddings to apply.
|
106 |
+
"""
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
dim: int,
|
111 |
+
num_attention_heads: int,
|
112 |
+
attention_head_dim: int,
|
113 |
+
dropout=0.0,
|
114 |
+
cross_attention_dim: Optional[int] = None,
|
115 |
+
activation_fn: str = "geglu",
|
116 |
+
num_embeds_ada_norm: Optional[int] = None,
|
117 |
+
attention_bias: bool = False,
|
118 |
+
only_cross_attention: bool = False,
|
119 |
+
double_self_attention: bool = False,
|
120 |
+
upcast_attention: bool = False,
|
121 |
+
norm_elementwise_affine: bool = True,
|
122 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
123 |
+
norm_eps: float = 1e-5,
|
124 |
+
final_dropout: bool = False,
|
125 |
+
attention_type: str = "default",
|
126 |
+
positional_embeddings: Optional[str] = None,
|
127 |
+
num_positional_embeddings: Optional[int] = None,
|
128 |
+
):
|
129 |
+
super().__init__()
|
130 |
+
self.only_cross_attention = only_cross_attention
|
131 |
+
|
132 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
133 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
134 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
135 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
136 |
+
|
137 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
138 |
+
raise ValueError(
|
139 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
140 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
141 |
+
)
|
142 |
+
|
143 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
144 |
+
raise ValueError(
|
145 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
146 |
+
)
|
147 |
+
|
148 |
+
if positional_embeddings == "sinusoidal":
|
149 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
150 |
+
else:
|
151 |
+
self.pos_embed = None
|
152 |
+
|
153 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
154 |
+
# 1. Self-Attn
|
155 |
+
if self.use_ada_layer_norm:
|
156 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
157 |
+
elif self.use_ada_layer_norm_zero:
|
158 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
159 |
+
else:
|
160 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
161 |
+
|
162 |
+
self.attn1 = Attention(
|
163 |
+
query_dim=dim,
|
164 |
+
heads=num_attention_heads,
|
165 |
+
dim_head=attention_head_dim,
|
166 |
+
dropout=dropout,
|
167 |
+
bias=attention_bias,
|
168 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
169 |
+
upcast_attention=upcast_attention,
|
170 |
+
)
|
171 |
+
|
172 |
+
# 2. Cross-Attn
|
173 |
+
if cross_attention_dim is not None or double_self_attention:
|
174 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
175 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
176 |
+
# the second cross attention block.
|
177 |
+
self.norm2 = (
|
178 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
179 |
+
if self.use_ada_layer_norm
|
180 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
181 |
+
)
|
182 |
+
self.attn2 = Attention(
|
183 |
+
query_dim=dim,
|
184 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
185 |
+
heads=num_attention_heads,
|
186 |
+
dim_head=attention_head_dim,
|
187 |
+
dropout=dropout,
|
188 |
+
bias=attention_bias,
|
189 |
+
upcast_attention=upcast_attention,
|
190 |
+
) # is self-attn if encoder_hidden_states is none
|
191 |
+
else:
|
192 |
+
self.norm2 = None
|
193 |
+
self.attn2 = None
|
194 |
+
|
195 |
+
# 3. Feed-forward
|
196 |
+
if not self.use_ada_layer_norm_single:
|
197 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
198 |
+
|
199 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
200 |
+
|
201 |
+
# 4. Fuser
|
202 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
203 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
204 |
+
|
205 |
+
# 5. Scale-shift for PixArt-Alpha.
|
206 |
+
if self.use_ada_layer_norm_single:
|
207 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
208 |
+
|
209 |
+
# let chunk size default to None
|
210 |
+
self._chunk_size = None
|
211 |
+
self._chunk_dim = 0
|
212 |
+
|
213 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
214 |
+
# Sets chunk feed-forward
|
215 |
+
self._chunk_size = chunk_size
|
216 |
+
self._chunk_dim = dim
|
217 |
+
|
218 |
+
def forward(
|
219 |
+
self,
|
220 |
+
hidden_states: torch.FloatTensor,
|
221 |
+
spatial_attn_inputs = [],
|
222 |
+
spatial_attn_idx = 0,
|
223 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
224 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
225 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
226 |
+
timestep: Optional[torch.LongTensor] = None,
|
227 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
228 |
+
class_labels: Optional[torch.LongTensor] = None,
|
229 |
+
) -> torch.FloatTensor:
|
230 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
231 |
+
# 0. Self-Attention
|
232 |
+
batch_size = hidden_states.shape[0]
|
233 |
+
|
234 |
+
spatial_attn_input = spatial_attn_inputs[spatial_attn_idx]
|
235 |
+
spatial_attn_idx += 1
|
236 |
+
hidden_states = torch.cat((hidden_states, spatial_attn_input), dim=1)
|
237 |
+
|
238 |
+
if self.use_ada_layer_norm:
|
239 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
240 |
+
elif self.use_ada_layer_norm_zero:
|
241 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
242 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
243 |
+
)
|
244 |
+
elif self.use_layer_norm:
|
245 |
+
norm_hidden_states = self.norm1(hidden_states)
|
246 |
+
elif self.use_ada_layer_norm_single:
|
247 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
248 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
249 |
+
).chunk(6, dim=1)
|
250 |
+
norm_hidden_states = self.norm1(hidden_states)
|
251 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
252 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
253 |
+
else:
|
254 |
+
raise ValueError("Incorrect norm used")
|
255 |
+
|
256 |
+
if self.pos_embed is not None:
|
257 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
258 |
+
|
259 |
+
# 1. Retrieve lora scale.
|
260 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
261 |
+
|
262 |
+
# 2. Prepare GLIGEN inputs
|
263 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
264 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
265 |
+
|
266 |
+
attn_output = self.attn1(
|
267 |
+
norm_hidden_states,
|
268 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
269 |
+
attention_mask=attention_mask,
|
270 |
+
**cross_attention_kwargs,
|
271 |
+
)
|
272 |
+
if self.use_ada_layer_norm_zero:
|
273 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
274 |
+
elif self.use_ada_layer_norm_single:
|
275 |
+
attn_output = gate_msa * attn_output
|
276 |
+
|
277 |
+
|
278 |
+
hidden_states = attn_output + hidden_states
|
279 |
+
hidden_states, _ = hidden_states.chunk(2, dim=1)
|
280 |
+
|
281 |
+
if hidden_states.ndim == 4:
|
282 |
+
hidden_states = hidden_states.squeeze(1)
|
283 |
+
|
284 |
+
# 2.5 GLIGEN Control
|
285 |
+
if gligen_kwargs is not None:
|
286 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
287 |
+
|
288 |
+
# 3. Cross-Attention
|
289 |
+
if self.attn2 is not None:
|
290 |
+
if self.use_ada_layer_norm:
|
291 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
292 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
293 |
+
norm_hidden_states = self.norm2(hidden_states)
|
294 |
+
elif self.use_ada_layer_norm_single:
|
295 |
+
# For PixArt norm2 isn't applied here:
|
296 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
297 |
+
norm_hidden_states = hidden_states
|
298 |
+
else:
|
299 |
+
raise ValueError("Incorrect norm")
|
300 |
+
|
301 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
302 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
303 |
+
|
304 |
+
attn_output = self.attn2(
|
305 |
+
norm_hidden_states,
|
306 |
+
encoder_hidden_states=encoder_hidden_states,
|
307 |
+
attention_mask=encoder_attention_mask,
|
308 |
+
**cross_attention_kwargs,
|
309 |
+
)
|
310 |
+
hidden_states = attn_output + hidden_states
|
311 |
+
|
312 |
+
# 4. Feed-forward
|
313 |
+
if not self.use_ada_layer_norm_single:
|
314 |
+
norm_hidden_states = self.norm3(hidden_states)
|
315 |
+
|
316 |
+
if self.use_ada_layer_norm_zero:
|
317 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
318 |
+
|
319 |
+
if self.use_ada_layer_norm_single:
|
320 |
+
norm_hidden_states = self.norm2(hidden_states)
|
321 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
322 |
+
|
323 |
+
if self._chunk_size is not None:
|
324 |
+
# "feed_forward_chunk_size" can be used to save memory
|
325 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
326 |
+
raise ValueError(
|
327 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
328 |
+
)
|
329 |
+
|
330 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
331 |
+
ff_output = torch.cat(
|
332 |
+
[
|
333 |
+
self.ff(hid_slice, scale=lora_scale)
|
334 |
+
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
|
335 |
+
],
|
336 |
+
dim=self._chunk_dim,
|
337 |
+
)
|
338 |
+
else:
|
339 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
340 |
+
|
341 |
+
if self.use_ada_layer_norm_zero:
|
342 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
343 |
+
elif self.use_ada_layer_norm_single:
|
344 |
+
ff_output = gate_mlp * ff_output
|
345 |
+
|
346 |
+
hidden_states = ff_output + hidden_states
|
347 |
+
if hidden_states.ndim == 4:
|
348 |
+
hidden_states = hidden_states.squeeze(1)
|
349 |
+
|
350 |
+
return hidden_states, spatial_attn_inputs, spatial_attn_idx
|
351 |
+
|
352 |
+
|
353 |
+
class FeedForward(nn.Module):
|
354 |
+
r"""
|
355 |
+
A feed-forward layer.
|
356 |
+
|
357 |
+
Parameters:
|
358 |
+
dim (`int`): The number of channels in the input.
|
359 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
360 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
361 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
362 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
363 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
364 |
+
"""
|
365 |
+
|
366 |
+
def __init__(
|
367 |
+
self,
|
368 |
+
dim: int,
|
369 |
+
dim_out: Optional[int] = None,
|
370 |
+
mult: int = 4,
|
371 |
+
dropout: float = 0.0,
|
372 |
+
activation_fn: str = "geglu",
|
373 |
+
final_dropout: bool = False,
|
374 |
+
):
|
375 |
+
super().__init__()
|
376 |
+
inner_dim = int(dim * mult)
|
377 |
+
dim_out = dim_out if dim_out is not None else dim
|
378 |
+
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
|
379 |
+
|
380 |
+
if activation_fn == "gelu":
|
381 |
+
act_fn = GELU(dim, inner_dim)
|
382 |
+
if activation_fn == "gelu-approximate":
|
383 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
384 |
+
elif activation_fn == "geglu":
|
385 |
+
act_fn = GEGLU(dim, inner_dim)
|
386 |
+
elif activation_fn == "geglu-approximate":
|
387 |
+
act_fn = ApproximateGELU(dim, inner_dim)
|
388 |
+
|
389 |
+
self.net = nn.ModuleList([])
|
390 |
+
# project in
|
391 |
+
self.net.append(act_fn)
|
392 |
+
# project dropout
|
393 |
+
self.net.append(nn.Dropout(dropout))
|
394 |
+
# project out
|
395 |
+
self.net.append(linear_cls(inner_dim, dim_out))
|
396 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
397 |
+
if final_dropout:
|
398 |
+
self.net.append(nn.Dropout(dropout))
|
399 |
+
|
400 |
+
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
|
401 |
+
compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
|
402 |
+
for module in self.net:
|
403 |
+
if isinstance(module, compatible_cls):
|
404 |
+
hidden_states = module(hidden_states, scale)
|
405 |
+
else:
|
406 |
+
hidden_states = module(hidden_states)
|
407 |
+
return hidden_states
|
ootd/pipelines_ootd/pipeline_ootd.py
ADDED
@@ -0,0 +1,846 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
+
import inspect
|
17 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
import torch
|
22 |
+
from packaging import version
|
23 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
24 |
+
|
25 |
+
from transformers import AutoProcessor, CLIPVisionModelWithProjection
|
26 |
+
|
27 |
+
from .unet_vton_2d_condition import UNetVton2DConditionModel
|
28 |
+
from .unet_garm_2d_condition import UNetGarm2DConditionModel
|
29 |
+
|
30 |
+
from diffusers.configuration_utils import FrozenDict
|
31 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
32 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
33 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
34 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
35 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
36 |
+
from diffusers.utils import (
|
37 |
+
PIL_INTERPOLATION,
|
38 |
+
USE_PEFT_BACKEND,
|
39 |
+
deprecate,
|
40 |
+
logging,
|
41 |
+
replace_example_docstring,
|
42 |
+
scale_lora_layers,
|
43 |
+
unscale_lora_layers,
|
44 |
+
)
|
45 |
+
from diffusers.utils.torch_utils import randn_tensor
|
46 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
47 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
48 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
52 |
+
|
53 |
+
|
54 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
|
55 |
+
def preprocess(image):
|
56 |
+
deprecation_message = "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead"
|
57 |
+
deprecate("preprocess", "1.0.0", deprecation_message, standard_warn=False)
|
58 |
+
if isinstance(image, torch.Tensor):
|
59 |
+
return image
|
60 |
+
elif isinstance(image, PIL.Image.Image):
|
61 |
+
image = [image]
|
62 |
+
|
63 |
+
if isinstance(image[0], PIL.Image.Image):
|
64 |
+
w, h = image[0].size
|
65 |
+
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
|
66 |
+
|
67 |
+
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
|
68 |
+
image = np.concatenate(image, axis=0)
|
69 |
+
image = np.array(image).astype(np.float32) / 255.0
|
70 |
+
image = image.transpose(0, 3, 1, 2)
|
71 |
+
image = 2.0 * image - 1.0
|
72 |
+
image = torch.from_numpy(image)
|
73 |
+
elif isinstance(image[0], torch.Tensor):
|
74 |
+
image = torch.cat(image, dim=0)
|
75 |
+
return image
|
76 |
+
|
77 |
+
|
78 |
+
class OotdPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
|
79 |
+
r"""
|
80 |
+
Args:
|
81 |
+
vae ([`AutoencoderKL`]):
|
82 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
83 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
84 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
85 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
86 |
+
A `CLIPTokenizer` to tokenize text.
|
87 |
+
unet ([`UNet2DConditionModel`]):
|
88 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
89 |
+
scheduler ([`SchedulerMixin`]):
|
90 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
91 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
92 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
93 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
94 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
95 |
+
about a model's potential harms.
|
96 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
97 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
98 |
+
"""
|
99 |
+
model_cpu_offload_seq = "text_encoder->unet->vae"
|
100 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
101 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
102 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "vton_latents"]
|
103 |
+
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
vae: AutoencoderKL,
|
107 |
+
text_encoder: CLIPTextModel,
|
108 |
+
tokenizer: CLIPTokenizer,
|
109 |
+
unet_garm: UNetGarm2DConditionModel,
|
110 |
+
unet_vton: UNetVton2DConditionModel,
|
111 |
+
scheduler: KarrasDiffusionSchedulers,
|
112 |
+
safety_checker: StableDiffusionSafetyChecker,
|
113 |
+
feature_extractor: CLIPImageProcessor,
|
114 |
+
requires_safety_checker: bool = True,
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
|
118 |
+
if safety_checker is None and requires_safety_checker:
|
119 |
+
logger.warning(
|
120 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
121 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
122 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
123 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
124 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
125 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
126 |
+
)
|
127 |
+
|
128 |
+
if safety_checker is not None and feature_extractor is None:
|
129 |
+
raise ValueError(
|
130 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
131 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
132 |
+
)
|
133 |
+
|
134 |
+
self.register_modules(
|
135 |
+
vae=vae,
|
136 |
+
text_encoder=text_encoder,
|
137 |
+
tokenizer=tokenizer,
|
138 |
+
unet_garm=unet_garm,
|
139 |
+
unet_vton=unet_vton,
|
140 |
+
scheduler=scheduler,
|
141 |
+
safety_checker=safety_checker,
|
142 |
+
feature_extractor=feature_extractor,
|
143 |
+
)
|
144 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
145 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
146 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
147 |
+
|
148 |
+
@torch.no_grad()
|
149 |
+
def __call__(
|
150 |
+
self,
|
151 |
+
prompt: Union[str, List[str]] = None,
|
152 |
+
image_garm: PipelineImageInput = None,
|
153 |
+
image_vton: PipelineImageInput = None,
|
154 |
+
mask: PipelineImageInput = None,
|
155 |
+
image_ori: PipelineImageInput = None,
|
156 |
+
num_inference_steps: int = 100,
|
157 |
+
guidance_scale: float = 7.5,
|
158 |
+
image_guidance_scale: float = 1.5,
|
159 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
160 |
+
num_images_per_prompt: Optional[int] = 1,
|
161 |
+
eta: float = 0.0,
|
162 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
163 |
+
latents: Optional[torch.FloatTensor] = None,
|
164 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
165 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
166 |
+
output_type: Optional[str] = "pil",
|
167 |
+
return_dict: bool = True,
|
168 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
169 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
170 |
+
**kwargs,
|
171 |
+
):
|
172 |
+
r"""
|
173 |
+
The call function to the pipeline for generation.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
prompt (`str` or `List[str]`, *optional*):
|
177 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
178 |
+
image (`torch.FloatTensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
179 |
+
`Image` or tensor representing an image batch to be repainted according to `prompt`. Can also accept
|
180 |
+
image latents as `image`, but if passing latents directly it is not encoded again.
|
181 |
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
182 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
183 |
+
expense of slower inference.
|
184 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
185 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
186 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
187 |
+
image_guidance_scale (`float`, *optional*, defaults to 1.5):
|
188 |
+
Push the generated image towards the initial `image`. Image guidance scale is enabled by setting
|
189 |
+
`image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely
|
190 |
+
linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a
|
191 |
+
value of at least `1`.
|
192 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
193 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
194 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
195 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
196 |
+
The number of images to generate per prompt.
|
197 |
+
eta (`float`, *optional*, defaults to 0.0):
|
198 |
+
Corresponds to parameter eta (Ξ·) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
199 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
200 |
+
generator (`torch.Generator`, *optional*):
|
201 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
202 |
+
generation deterministic.
|
203 |
+
latents (`torch.FloatTensor`, *optional*):
|
204 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
205 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
206 |
+
tensor is generated by sampling using the supplied random `generator`.
|
207 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
208 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
209 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
210 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
211 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
212 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
213 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
214 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
215 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
216 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
217 |
+
plain tuple.
|
218 |
+
callback_on_step_end (`Callable`, *optional*):
|
219 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
220 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
221 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
222 |
+
`callback_on_step_end_tensor_inputs`.
|
223 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
224 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
225 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
226 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
227 |
+
|
228 |
+
Returns:
|
229 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
230 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
231 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
232 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
233 |
+
"not-safe-for-work" (nsfw) content.
|
234 |
+
"""
|
235 |
+
|
236 |
+
callback = kwargs.pop("callback", None)
|
237 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
238 |
+
|
239 |
+
if callback is not None:
|
240 |
+
deprecate(
|
241 |
+
"callback",
|
242 |
+
"1.0.0",
|
243 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
244 |
+
)
|
245 |
+
if callback_steps is not None:
|
246 |
+
deprecate(
|
247 |
+
"callback_steps",
|
248 |
+
"1.0.0",
|
249 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
250 |
+
)
|
251 |
+
|
252 |
+
# 0. Check inputs
|
253 |
+
self.check_inputs(
|
254 |
+
prompt,
|
255 |
+
callback_steps,
|
256 |
+
negative_prompt,
|
257 |
+
prompt_embeds,
|
258 |
+
negative_prompt_embeds,
|
259 |
+
callback_on_step_end_tensor_inputs,
|
260 |
+
)
|
261 |
+
self._guidance_scale = guidance_scale
|
262 |
+
self._image_guidance_scale = image_guidance_scale
|
263 |
+
|
264 |
+
if (image_vton is None) or (image_garm is None):
|
265 |
+
raise ValueError("`image` input cannot be undefined.")
|
266 |
+
|
267 |
+
# 1. Define call parameters
|
268 |
+
if prompt is not None and isinstance(prompt, str):
|
269 |
+
batch_size = 1
|
270 |
+
elif prompt is not None and isinstance(prompt, list):
|
271 |
+
batch_size = len(prompt)
|
272 |
+
else:
|
273 |
+
batch_size = prompt_embeds.shape[0]
|
274 |
+
|
275 |
+
device = self._execution_device
|
276 |
+
# check if scheduler is in sigmas space
|
277 |
+
scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas")
|
278 |
+
|
279 |
+
# 2. Encode input prompt
|
280 |
+
prompt_embeds = self._encode_prompt(
|
281 |
+
prompt,
|
282 |
+
device,
|
283 |
+
num_images_per_prompt,
|
284 |
+
self.do_classifier_free_guidance,
|
285 |
+
negative_prompt,
|
286 |
+
prompt_embeds=prompt_embeds,
|
287 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
288 |
+
)
|
289 |
+
|
290 |
+
# 3. Preprocess image
|
291 |
+
image_garm = self.image_processor.preprocess(image_garm)
|
292 |
+
image_vton = self.image_processor.preprocess(image_vton)
|
293 |
+
image_ori = self.image_processor.preprocess(image_ori)
|
294 |
+
mask = np.array(mask)
|
295 |
+
mask[mask < 127] = 0
|
296 |
+
mask[mask >= 127] = 255
|
297 |
+
mask = torch.tensor(mask)
|
298 |
+
mask = mask / 255
|
299 |
+
mask = mask.reshape(-1, 1, mask.size(-2), mask.size(-1))
|
300 |
+
|
301 |
+
# 4. set timesteps
|
302 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
303 |
+
timesteps = self.scheduler.timesteps
|
304 |
+
|
305 |
+
# 5. Prepare Image latents
|
306 |
+
garm_latents = self.prepare_garm_latents(
|
307 |
+
image_garm,
|
308 |
+
batch_size,
|
309 |
+
num_images_per_prompt,
|
310 |
+
prompt_embeds.dtype,
|
311 |
+
device,
|
312 |
+
self.do_classifier_free_guidance,
|
313 |
+
generator,
|
314 |
+
)
|
315 |
+
|
316 |
+
vton_latents, mask_latents, image_ori_latents = self.prepare_vton_latents(
|
317 |
+
image_vton,
|
318 |
+
mask,
|
319 |
+
image_ori,
|
320 |
+
batch_size,
|
321 |
+
num_images_per_prompt,
|
322 |
+
prompt_embeds.dtype,
|
323 |
+
device,
|
324 |
+
self.do_classifier_free_guidance,
|
325 |
+
generator,
|
326 |
+
)
|
327 |
+
|
328 |
+
height, width = vton_latents.shape[-2:]
|
329 |
+
height = height * self.vae_scale_factor
|
330 |
+
width = width * self.vae_scale_factor
|
331 |
+
|
332 |
+
# 6. Prepare latent variables
|
333 |
+
num_channels_latents = self.vae.config.latent_channels
|
334 |
+
latents = self.prepare_latents(
|
335 |
+
batch_size * num_images_per_prompt,
|
336 |
+
num_channels_latents,
|
337 |
+
height,
|
338 |
+
width,
|
339 |
+
prompt_embeds.dtype,
|
340 |
+
device,
|
341 |
+
generator,
|
342 |
+
latents,
|
343 |
+
)
|
344 |
+
|
345 |
+
noise = latents.clone()
|
346 |
+
|
347 |
+
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
348 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
349 |
+
|
350 |
+
# 9. Denoising loop
|
351 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
352 |
+
self._num_timesteps = len(timesteps)
|
353 |
+
|
354 |
+
_, spatial_attn_outputs = self.unet_garm(
|
355 |
+
garm_latents,
|
356 |
+
0,
|
357 |
+
encoder_hidden_states=prompt_embeds,
|
358 |
+
return_dict=False,
|
359 |
+
)
|
360 |
+
|
361 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
362 |
+
for i, t in enumerate(timesteps):
|
363 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
364 |
+
|
365 |
+
# concat latents, image_latents in the channel dimension
|
366 |
+
scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
367 |
+
latent_vton_model_input = torch.cat([scaled_latent_model_input, vton_latents], dim=1)
|
368 |
+
# latent_vton_model_input = scaled_latent_model_input + vton_latents
|
369 |
+
|
370 |
+
spatial_attn_inputs = spatial_attn_outputs.copy()
|
371 |
+
|
372 |
+
# predict the noise residual
|
373 |
+
noise_pred = self.unet_vton(
|
374 |
+
latent_vton_model_input,
|
375 |
+
spatial_attn_inputs,
|
376 |
+
t,
|
377 |
+
encoder_hidden_states=prompt_embeds,
|
378 |
+
return_dict=False,
|
379 |
+
)[0]
|
380 |
+
|
381 |
+
# Hack:
|
382 |
+
# For karras style schedulers the model does classifer free guidance using the
|
383 |
+
# predicted_original_sample instead of the noise_pred. So we need to compute the
|
384 |
+
# predicted_original_sample here if we are using a karras style scheduler.
|
385 |
+
if scheduler_is_in_sigma_space:
|
386 |
+
step_index = (self.scheduler.timesteps == t).nonzero()[0].item()
|
387 |
+
sigma = self.scheduler.sigmas[step_index]
|
388 |
+
noise_pred = latent_model_input - sigma * noise_pred
|
389 |
+
|
390 |
+
# perform guidance
|
391 |
+
if self.do_classifier_free_guidance:
|
392 |
+
noise_pred_text_image, noise_pred_text = noise_pred.chunk(2)
|
393 |
+
noise_pred = (
|
394 |
+
noise_pred_text
|
395 |
+
+ self.image_guidance_scale * (noise_pred_text_image - noise_pred_text)
|
396 |
+
)
|
397 |
+
|
398 |
+
# Hack:
|
399 |
+
# For karras style schedulers the model does classifer free guidance using the
|
400 |
+
# predicted_original_sample instead of the noise_pred. But the scheduler.step function
|
401 |
+
# expects the noise_pred and computes the predicted_original_sample internally. So we
|
402 |
+
# need to overwrite the noise_pred here such that the value of the computed
|
403 |
+
# predicted_original_sample is correct.
|
404 |
+
if scheduler_is_in_sigma_space:
|
405 |
+
noise_pred = (noise_pred - latents) / (-sigma)
|
406 |
+
|
407 |
+
# compute the previous noisy sample x_t -> x_t-1
|
408 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
409 |
+
|
410 |
+
init_latents_proper = image_ori_latents * self.vae.config.scaling_factor
|
411 |
+
|
412 |
+
# repainting
|
413 |
+
if i < len(timesteps) - 1:
|
414 |
+
noise_timestep = timesteps[i + 1]
|
415 |
+
init_latents_proper = self.scheduler.add_noise(
|
416 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
417 |
+
)
|
418 |
+
|
419 |
+
latents = (1 - mask_latents) * init_latents_proper + mask_latents * latents
|
420 |
+
|
421 |
+
if callback_on_step_end is not None:
|
422 |
+
callback_kwargs = {}
|
423 |
+
for k in callback_on_step_end_tensor_inputs:
|
424 |
+
callback_kwargs[k] = locals()[k]
|
425 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
426 |
+
|
427 |
+
latents = callback_outputs.pop("latents", latents)
|
428 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
429 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
430 |
+
vton_latents = callback_outputs.pop("vton_latents", vton_latents)
|
431 |
+
|
432 |
+
# call the callback, if provided
|
433 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
434 |
+
progress_bar.update()
|
435 |
+
if callback is not None and i % callback_steps == 0:
|
436 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
437 |
+
callback(step_idx, t, latents)
|
438 |
+
|
439 |
+
if not output_type == "latent":
|
440 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
441 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
442 |
+
else:
|
443 |
+
image = latents
|
444 |
+
has_nsfw_concept = None
|
445 |
+
|
446 |
+
if has_nsfw_concept is None:
|
447 |
+
do_denormalize = [True] * image.shape[0]
|
448 |
+
else:
|
449 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
450 |
+
|
451 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
452 |
+
|
453 |
+
# Offload all models
|
454 |
+
self.maybe_free_model_hooks()
|
455 |
+
|
456 |
+
if not return_dict:
|
457 |
+
return (image, has_nsfw_concept)
|
458 |
+
|
459 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
460 |
+
|
461 |
+
def _encode_prompt(
|
462 |
+
self,
|
463 |
+
prompt,
|
464 |
+
device,
|
465 |
+
num_images_per_prompt,
|
466 |
+
do_classifier_free_guidance,
|
467 |
+
negative_prompt=None,
|
468 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
469 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
470 |
+
):
|
471 |
+
r"""
|
472 |
+
Encodes the prompt into text encoder hidden states.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
prompt (`str` or `List[str]`, *optional*):
|
476 |
+
prompt to be encoded
|
477 |
+
device: (`torch.device`):
|
478 |
+
torch device
|
479 |
+
num_images_per_prompt (`int`):
|
480 |
+
number of images that should be generated per prompt
|
481 |
+
do_classifier_free_guidance (`bool`):
|
482 |
+
whether to use classifier free guidance or not
|
483 |
+
negative_ prompt (`str` or `List[str]`, *optional*):
|
484 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
485 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
486 |
+
less than `1`).
|
487 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
488 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
489 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
490 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
491 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
492 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
493 |
+
argument.
|
494 |
+
"""
|
495 |
+
if prompt is not None and isinstance(prompt, str):
|
496 |
+
batch_size = 1
|
497 |
+
elif prompt is not None and isinstance(prompt, list):
|
498 |
+
batch_size = len(prompt)
|
499 |
+
else:
|
500 |
+
batch_size = prompt_embeds.shape[0]
|
501 |
+
|
502 |
+
if prompt_embeds is None:
|
503 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
504 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
505 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
506 |
+
|
507 |
+
text_inputs = self.tokenizer(
|
508 |
+
prompt,
|
509 |
+
padding="max_length",
|
510 |
+
max_length=self.tokenizer.model_max_length,
|
511 |
+
truncation=True,
|
512 |
+
return_tensors="pt",
|
513 |
+
)
|
514 |
+
text_input_ids = text_inputs.input_ids
|
515 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
516 |
+
|
517 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
518 |
+
text_input_ids, untruncated_ids
|
519 |
+
):
|
520 |
+
removed_text = self.tokenizer.batch_decode(
|
521 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
522 |
+
)
|
523 |
+
logger.warning(
|
524 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
525 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
526 |
+
)
|
527 |
+
|
528 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
529 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
530 |
+
else:
|
531 |
+
attention_mask = None
|
532 |
+
|
533 |
+
prompt_embeds = self.text_encoder(
|
534 |
+
text_input_ids.to(device),
|
535 |
+
attention_mask=attention_mask,
|
536 |
+
)
|
537 |
+
prompt_embeds = prompt_embeds[0]
|
538 |
+
|
539 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
540 |
+
|
541 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
542 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
543 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
544 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
545 |
+
|
546 |
+
# get unconditional embeddings for classifier free guidance
|
547 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
548 |
+
uncond_tokens: List[str]
|
549 |
+
if negative_prompt is None:
|
550 |
+
uncond_tokens = [""] * batch_size
|
551 |
+
elif type(prompt) is not type(negative_prompt):
|
552 |
+
raise TypeError(
|
553 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
554 |
+
f" {type(prompt)}."
|
555 |
+
)
|
556 |
+
elif isinstance(negative_prompt, str):
|
557 |
+
uncond_tokens = [negative_prompt]
|
558 |
+
elif batch_size != len(negative_prompt):
|
559 |
+
raise ValueError(
|
560 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
561 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
562 |
+
" the batch size of `prompt`."
|
563 |
+
)
|
564 |
+
else:
|
565 |
+
uncond_tokens = negative_prompt
|
566 |
+
|
567 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
568 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
569 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
570 |
+
|
571 |
+
max_length = prompt_embeds.shape[1]
|
572 |
+
uncond_input = self.tokenizer(
|
573 |
+
uncond_tokens,
|
574 |
+
padding="max_length",
|
575 |
+
max_length=max_length,
|
576 |
+
truncation=True,
|
577 |
+
return_tensors="pt",
|
578 |
+
)
|
579 |
+
|
580 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
581 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
582 |
+
else:
|
583 |
+
attention_mask = None
|
584 |
+
|
585 |
+
if do_classifier_free_guidance:
|
586 |
+
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds])
|
587 |
+
|
588 |
+
return prompt_embeds
|
589 |
+
|
590 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
591 |
+
def run_safety_checker(self, image, device, dtype):
|
592 |
+
if self.safety_checker is None:
|
593 |
+
has_nsfw_concept = None
|
594 |
+
else:
|
595 |
+
if torch.is_tensor(image):
|
596 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
597 |
+
else:
|
598 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
599 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
600 |
+
image, has_nsfw_concept = self.safety_checker(
|
601 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
602 |
+
)
|
603 |
+
return image, has_nsfw_concept
|
604 |
+
|
605 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
606 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
607 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
608 |
+
# eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
609 |
+
# eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502
|
610 |
+
# and should be between [0, 1]
|
611 |
+
|
612 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
613 |
+
extra_step_kwargs = {}
|
614 |
+
if accepts_eta:
|
615 |
+
extra_step_kwargs["eta"] = eta
|
616 |
+
|
617 |
+
# check if the scheduler accepts generator
|
618 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
619 |
+
if accepts_generator:
|
620 |
+
extra_step_kwargs["generator"] = generator
|
621 |
+
return extra_step_kwargs
|
622 |
+
|
623 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
624 |
+
def decode_latents(self, latents):
|
625 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
626 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
627 |
+
|
628 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
629 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
630 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
631 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
632 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
633 |
+
return image
|
634 |
+
|
635 |
+
def check_inputs(
|
636 |
+
self,
|
637 |
+
prompt,
|
638 |
+
callback_steps,
|
639 |
+
negative_prompt=None,
|
640 |
+
prompt_embeds=None,
|
641 |
+
negative_prompt_embeds=None,
|
642 |
+
callback_on_step_end_tensor_inputs=None,
|
643 |
+
):
|
644 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
645 |
+
raise ValueError(
|
646 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
647 |
+
f" {type(callback_steps)}."
|
648 |
+
)
|
649 |
+
|
650 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
651 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
652 |
+
):
|
653 |
+
raise ValueError(
|
654 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
655 |
+
)
|
656 |
+
|
657 |
+
if prompt is not None and prompt_embeds is not None:
|
658 |
+
raise ValueError(
|
659 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
660 |
+
" only forward one of the two."
|
661 |
+
)
|
662 |
+
elif prompt is None and prompt_embeds is None:
|
663 |
+
raise ValueError(
|
664 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
665 |
+
)
|
666 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
667 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
668 |
+
|
669 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
670 |
+
raise ValueError(
|
671 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
672 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
673 |
+
)
|
674 |
+
|
675 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
676 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
677 |
+
raise ValueError(
|
678 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
679 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
680 |
+
f" {negative_prompt_embeds.shape}."
|
681 |
+
)
|
682 |
+
|
683 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
684 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
685 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
686 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
687 |
+
raise ValueError(
|
688 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
689 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
690 |
+
)
|
691 |
+
|
692 |
+
if latents is None:
|
693 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
694 |
+
else:
|
695 |
+
latents = latents.to(device)
|
696 |
+
|
697 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
698 |
+
latents = latents * self.scheduler.init_noise_sigma
|
699 |
+
return latents
|
700 |
+
|
701 |
+
def prepare_garm_latents(
|
702 |
+
self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None
|
703 |
+
):
|
704 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
705 |
+
raise ValueError(
|
706 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
707 |
+
)
|
708 |
+
|
709 |
+
image = image.to(device=device, dtype=dtype)
|
710 |
+
|
711 |
+
batch_size = batch_size * num_images_per_prompt
|
712 |
+
|
713 |
+
if image.shape[1] == 4:
|
714 |
+
image_latents = image
|
715 |
+
else:
|
716 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
717 |
+
raise ValueError(
|
718 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
719 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
720 |
+
)
|
721 |
+
|
722 |
+
if isinstance(generator, list):
|
723 |
+
image_latents = [self.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size)]
|
724 |
+
image_latents = torch.cat(image_latents, dim=0)
|
725 |
+
else:
|
726 |
+
image_latents = self.vae.encode(image).latent_dist.mode()
|
727 |
+
|
728 |
+
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
729 |
+
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
730 |
+
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
731 |
+
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
732 |
+
raise ValueError(
|
733 |
+
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
734 |
+
)
|
735 |
+
else:
|
736 |
+
image_latents = torch.cat([image_latents], dim=0)
|
737 |
+
|
738 |
+
if do_classifier_free_guidance:
|
739 |
+
uncond_image_latents = torch.zeros_like(image_latents)
|
740 |
+
image_latents = torch.cat([image_latents, uncond_image_latents], dim=0)
|
741 |
+
|
742 |
+
return image_latents
|
743 |
+
|
744 |
+
def prepare_vton_latents(
|
745 |
+
self, image, mask, image_ori, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None
|
746 |
+
):
|
747 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
748 |
+
raise ValueError(
|
749 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
750 |
+
)
|
751 |
+
|
752 |
+
image = image.to(device=device, dtype=dtype)
|
753 |
+
image_ori = image_ori.to(device=device, dtype=dtype)
|
754 |
+
|
755 |
+
batch_size = batch_size * num_images_per_prompt
|
756 |
+
|
757 |
+
if image.shape[1] == 4:
|
758 |
+
image_latents = image
|
759 |
+
image_ori_latents = image_ori
|
760 |
+
else:
|
761 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
762 |
+
raise ValueError(
|
763 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
764 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
765 |
+
)
|
766 |
+
|
767 |
+
if isinstance(generator, list):
|
768 |
+
image_latents = [self.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size)]
|
769 |
+
image_latents = torch.cat(image_latents, dim=0)
|
770 |
+
image_ori_latents = [self.vae.encode(image_ori[i : i + 1]).latent_dist.mode() for i in range(batch_size)]
|
771 |
+
image_ori_latents = torch.cat(image_ori_latents, dim=0)
|
772 |
+
else:
|
773 |
+
image_latents = self.vae.encode(image).latent_dist.mode()
|
774 |
+
image_ori_latents = self.vae.encode(image_ori).latent_dist.mode()
|
775 |
+
|
776 |
+
mask = torch.nn.functional.interpolate(
|
777 |
+
mask, size=(image_latents.size(-2), image_latents.size(-1))
|
778 |
+
)
|
779 |
+
mask = mask.to(device=device, dtype=dtype)
|
780 |
+
|
781 |
+
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
782 |
+
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
783 |
+
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
784 |
+
mask = torch.cat([mask] * additional_image_per_prompt, dim=0)
|
785 |
+
image_ori_latents = torch.cat([image_ori_latents] * additional_image_per_prompt, dim=0)
|
786 |
+
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
787 |
+
raise ValueError(
|
788 |
+
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
789 |
+
)
|
790 |
+
else:
|
791 |
+
image_latents = torch.cat([image_latents], dim=0)
|
792 |
+
mask = torch.cat([mask], dim=0)
|
793 |
+
image_ori_latents = torch.cat([image_ori_latents], dim=0)
|
794 |
+
|
795 |
+
if do_classifier_free_guidance:
|
796 |
+
# uncond_image_latents = torch.zeros_like(image_latents)
|
797 |
+
image_latents = torch.cat([image_latents] * 2, dim=0)
|
798 |
+
|
799 |
+
return image_latents, mask, image_ori_latents
|
800 |
+
|
801 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
802 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
803 |
+
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
804 |
+
|
805 |
+
The suffixes after the scaling factors represent the stages where they are being applied.
|
806 |
+
|
807 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
808 |
+
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
809 |
+
|
810 |
+
Args:
|
811 |
+
s1 (`float`):
|
812 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
813 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
814 |
+
s2 (`float`):
|
815 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
816 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
817 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
818 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
819 |
+
"""
|
820 |
+
if not hasattr(self, "unet"):
|
821 |
+
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
822 |
+
self.unet_vton.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
823 |
+
|
824 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
825 |
+
def disable_freeu(self):
|
826 |
+
"""Disables the FreeU mechanism if enabled."""
|
827 |
+
self.unet_vton.disable_freeu()
|
828 |
+
|
829 |
+
@property
|
830 |
+
def guidance_scale(self):
|
831 |
+
return self._guidance_scale
|
832 |
+
|
833 |
+
@property
|
834 |
+
def image_guidance_scale(self):
|
835 |
+
return self._image_guidance_scale
|
836 |
+
|
837 |
+
@property
|
838 |
+
def num_timesteps(self):
|
839 |
+
return self._num_timesteps
|
840 |
+
|
841 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
842 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
843 |
+
# corresponds to doing no classifier free guidance.
|
844 |
+
@property
|
845 |
+
def do_classifier_free_guidance(self):
|
846 |
+
return self.image_guidance_scale >= 1.0
|
ootd/pipelines_ootd/transformer_garm_2d.py
ADDED
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import Any, Dict, Optional
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from torch import nn
|
22 |
+
|
23 |
+
from .attention_garm import BasicTransformerBlock
|
24 |
+
|
25 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
27 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate
|
28 |
+
# from diffusers.models.attention import BasicTransformerBlock
|
29 |
+
from diffusers.models.embeddings import CaptionProjection, PatchEmbed
|
30 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
31 |
+
from diffusers.models.modeling_utils import ModelMixin
|
32 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class Transformer2DModelOutput(BaseOutput):
|
37 |
+
"""
|
38 |
+
The output of [`Transformer2DModel`].
|
39 |
+
|
40 |
+
Args:
|
41 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
42 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
43 |
+
distributions for the unnoised latent pixels.
|
44 |
+
"""
|
45 |
+
|
46 |
+
sample: torch.FloatTensor
|
47 |
+
|
48 |
+
|
49 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
50 |
+
"""
|
51 |
+
A 2D Transformer model for image-like data.
|
52 |
+
|
53 |
+
Parameters:
|
54 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
55 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
56 |
+
in_channels (`int`, *optional*):
|
57 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
58 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
59 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
60 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
61 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
62 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
63 |
+
num_vector_embeds (`int`, *optional*):
|
64 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
65 |
+
Includes the class for the masked latent pixel.
|
66 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
67 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
68 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
69 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
70 |
+
added to the hidden states.
|
71 |
+
|
72 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
73 |
+
attention_bias (`bool`, *optional*):
|
74 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
75 |
+
"""
|
76 |
+
|
77 |
+
@register_to_config
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
num_attention_heads: int = 16,
|
81 |
+
attention_head_dim: int = 88,
|
82 |
+
in_channels: Optional[int] = None,
|
83 |
+
out_channels: Optional[int] = None,
|
84 |
+
num_layers: int = 1,
|
85 |
+
dropout: float = 0.0,
|
86 |
+
norm_num_groups: int = 32,
|
87 |
+
cross_attention_dim: Optional[int] = None,
|
88 |
+
attention_bias: bool = False,
|
89 |
+
sample_size: Optional[int] = None,
|
90 |
+
num_vector_embeds: Optional[int] = None,
|
91 |
+
patch_size: Optional[int] = None,
|
92 |
+
activation_fn: str = "geglu",
|
93 |
+
num_embeds_ada_norm: Optional[int] = None,
|
94 |
+
use_linear_projection: bool = False,
|
95 |
+
only_cross_attention: bool = False,
|
96 |
+
double_self_attention: bool = False,
|
97 |
+
upcast_attention: bool = False,
|
98 |
+
norm_type: str = "layer_norm",
|
99 |
+
norm_elementwise_affine: bool = True,
|
100 |
+
norm_eps: float = 1e-5,
|
101 |
+
attention_type: str = "default",
|
102 |
+
caption_channels: int = None,
|
103 |
+
):
|
104 |
+
super().__init__()
|
105 |
+
self.use_linear_projection = use_linear_projection
|
106 |
+
self.num_attention_heads = num_attention_heads
|
107 |
+
self.attention_head_dim = attention_head_dim
|
108 |
+
inner_dim = num_attention_heads * attention_head_dim
|
109 |
+
|
110 |
+
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
111 |
+
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
112 |
+
|
113 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
114 |
+
# Define whether input is continuous or discrete depending on configuration
|
115 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
116 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
117 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
118 |
+
|
119 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
120 |
+
deprecation_message = (
|
121 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
122 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
123 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
124 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
125 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
126 |
+
)
|
127 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
128 |
+
norm_type = "ada_norm"
|
129 |
+
|
130 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
131 |
+
raise ValueError(
|
132 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
133 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
134 |
+
)
|
135 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
136 |
+
raise ValueError(
|
137 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
138 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
139 |
+
)
|
140 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
141 |
+
raise ValueError(
|
142 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
143 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
144 |
+
)
|
145 |
+
|
146 |
+
# 2. Define input layers
|
147 |
+
if self.is_input_continuous:
|
148 |
+
self.in_channels = in_channels
|
149 |
+
|
150 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
151 |
+
if use_linear_projection:
|
152 |
+
self.proj_in = linear_cls(in_channels, inner_dim)
|
153 |
+
else:
|
154 |
+
self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
155 |
+
elif self.is_input_vectorized:
|
156 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
157 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
158 |
+
|
159 |
+
self.height = sample_size
|
160 |
+
self.width = sample_size
|
161 |
+
self.num_vector_embeds = num_vector_embeds
|
162 |
+
self.num_latent_pixels = self.height * self.width
|
163 |
+
|
164 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
165 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
166 |
+
)
|
167 |
+
elif self.is_input_patches:
|
168 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
169 |
+
|
170 |
+
self.height = sample_size
|
171 |
+
self.width = sample_size
|
172 |
+
|
173 |
+
self.patch_size = patch_size
|
174 |
+
interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
|
175 |
+
interpolation_scale = max(interpolation_scale, 1)
|
176 |
+
self.pos_embed = PatchEmbed(
|
177 |
+
height=sample_size,
|
178 |
+
width=sample_size,
|
179 |
+
patch_size=patch_size,
|
180 |
+
in_channels=in_channels,
|
181 |
+
embed_dim=inner_dim,
|
182 |
+
interpolation_scale=interpolation_scale,
|
183 |
+
)
|
184 |
+
|
185 |
+
# 3. Define transformers blocks
|
186 |
+
self.transformer_blocks = nn.ModuleList(
|
187 |
+
[
|
188 |
+
BasicTransformerBlock(
|
189 |
+
inner_dim,
|
190 |
+
num_attention_heads,
|
191 |
+
attention_head_dim,
|
192 |
+
dropout=dropout,
|
193 |
+
cross_attention_dim=cross_attention_dim,
|
194 |
+
activation_fn=activation_fn,
|
195 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
196 |
+
attention_bias=attention_bias,
|
197 |
+
only_cross_attention=only_cross_attention,
|
198 |
+
double_self_attention=double_self_attention,
|
199 |
+
upcast_attention=upcast_attention,
|
200 |
+
norm_type=norm_type,
|
201 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
202 |
+
norm_eps=norm_eps,
|
203 |
+
attention_type=attention_type,
|
204 |
+
)
|
205 |
+
for d in range(num_layers)
|
206 |
+
]
|
207 |
+
)
|
208 |
+
|
209 |
+
# 4. Define output layers
|
210 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
211 |
+
if self.is_input_continuous:
|
212 |
+
# TODO: should use out_channels for continuous projections
|
213 |
+
if use_linear_projection:
|
214 |
+
self.proj_out = linear_cls(inner_dim, in_channels)
|
215 |
+
else:
|
216 |
+
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
217 |
+
elif self.is_input_vectorized:
|
218 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
219 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
220 |
+
elif self.is_input_patches and norm_type != "ada_norm_single":
|
221 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
222 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
223 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
224 |
+
elif self.is_input_patches and norm_type == "ada_norm_single":
|
225 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
226 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
227 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
228 |
+
|
229 |
+
# 5. PixArt-Alpha blocks.
|
230 |
+
self.adaln_single = None
|
231 |
+
self.use_additional_conditions = False
|
232 |
+
if norm_type == "ada_norm_single":
|
233 |
+
self.use_additional_conditions = self.config.sample_size == 128
|
234 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
235 |
+
# additional conditions until we find better name
|
236 |
+
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
|
237 |
+
|
238 |
+
self.caption_projection = None
|
239 |
+
if caption_channels is not None:
|
240 |
+
self.caption_projection = CaptionProjection(in_features=caption_channels, hidden_size=inner_dim)
|
241 |
+
|
242 |
+
self.gradient_checkpointing = False
|
243 |
+
|
244 |
+
def forward(
|
245 |
+
self,
|
246 |
+
hidden_states: torch.Tensor,
|
247 |
+
spatial_attn_inputs = [],
|
248 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
249 |
+
timestep: Optional[torch.LongTensor] = None,
|
250 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
251 |
+
class_labels: Optional[torch.LongTensor] = None,
|
252 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
253 |
+
attention_mask: Optional[torch.Tensor] = None,
|
254 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
255 |
+
return_dict: bool = True,
|
256 |
+
):
|
257 |
+
"""
|
258 |
+
The [`Transformer2DModel`] forward method.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
262 |
+
Input `hidden_states`.
|
263 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
264 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
265 |
+
self-attention.
|
266 |
+
timestep ( `torch.LongTensor`, *optional*):
|
267 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
268 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
269 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
270 |
+
`AdaLayerZeroNorm`.
|
271 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
272 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
273 |
+
`self.processor` in
|
274 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
275 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
276 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
277 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
278 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
279 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
280 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
281 |
+
|
282 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
283 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
284 |
+
|
285 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
286 |
+
above. This bias will be added to the cross-attention scores.
|
287 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
288 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
289 |
+
tuple.
|
290 |
+
|
291 |
+
Returns:
|
292 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
293 |
+
`tuple` where the first element is the sample tensor.
|
294 |
+
"""
|
295 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
296 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
297 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
298 |
+
# expects mask of shape:
|
299 |
+
# [batch, key_tokens]
|
300 |
+
# adds singleton query_tokens dimension:
|
301 |
+
# [batch, 1, key_tokens]
|
302 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
303 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
304 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
305 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
306 |
+
# assume that mask is expressed as:
|
307 |
+
# (1 = keep, 0 = discard)
|
308 |
+
# convert mask into a bias that can be added to attention scores:
|
309 |
+
# (keep = +0, discard = -10000.0)
|
310 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
311 |
+
attention_mask = attention_mask.unsqueeze(1)
|
312 |
+
|
313 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
314 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
315 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
316 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
317 |
+
|
318 |
+
# Retrieve lora scale.
|
319 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
320 |
+
|
321 |
+
# 1. Input
|
322 |
+
if self.is_input_continuous:
|
323 |
+
batch, _, height, width = hidden_states.shape
|
324 |
+
residual = hidden_states
|
325 |
+
|
326 |
+
hidden_states = self.norm(hidden_states)
|
327 |
+
if not self.use_linear_projection:
|
328 |
+
hidden_states = (
|
329 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
330 |
+
if not USE_PEFT_BACKEND
|
331 |
+
else self.proj_in(hidden_states)
|
332 |
+
)
|
333 |
+
inner_dim = hidden_states.shape[1]
|
334 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
335 |
+
else:
|
336 |
+
inner_dim = hidden_states.shape[1]
|
337 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
338 |
+
hidden_states = (
|
339 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
340 |
+
if not USE_PEFT_BACKEND
|
341 |
+
else self.proj_in(hidden_states)
|
342 |
+
)
|
343 |
+
|
344 |
+
elif self.is_input_vectorized:
|
345 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
346 |
+
elif self.is_input_patches:
|
347 |
+
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
348 |
+
hidden_states = self.pos_embed(hidden_states)
|
349 |
+
|
350 |
+
if self.adaln_single is not None:
|
351 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
352 |
+
raise ValueError(
|
353 |
+
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
354 |
+
)
|
355 |
+
batch_size = hidden_states.shape[0]
|
356 |
+
timestep, embedded_timestep = self.adaln_single(
|
357 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
358 |
+
)
|
359 |
+
|
360 |
+
# 2. Blocks
|
361 |
+
if self.caption_projection is not None:
|
362 |
+
batch_size = hidden_states.shape[0]
|
363 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
364 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
365 |
+
|
366 |
+
for block in self.transformer_blocks:
|
367 |
+
if self.training and self.gradient_checkpointing:
|
368 |
+
hidden_states, spatial_attn_inputs = torch.utils.checkpoint.checkpoint(
|
369 |
+
block,
|
370 |
+
hidden_states,
|
371 |
+
spatial_attn_inputs,
|
372 |
+
attention_mask,
|
373 |
+
encoder_hidden_states,
|
374 |
+
encoder_attention_mask,
|
375 |
+
timestep,
|
376 |
+
cross_attention_kwargs,
|
377 |
+
class_labels,
|
378 |
+
use_reentrant=False,
|
379 |
+
)
|
380 |
+
else:
|
381 |
+
hidden_states, spatial_attn_inputs = block(
|
382 |
+
hidden_states,
|
383 |
+
spatial_attn_inputs,
|
384 |
+
attention_mask=attention_mask,
|
385 |
+
encoder_hidden_states=encoder_hidden_states,
|
386 |
+
encoder_attention_mask=encoder_attention_mask,
|
387 |
+
timestep=timestep,
|
388 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
389 |
+
class_labels=class_labels,
|
390 |
+
)
|
391 |
+
|
392 |
+
# 3. Output
|
393 |
+
if self.is_input_continuous:
|
394 |
+
if not self.use_linear_projection:
|
395 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
396 |
+
hidden_states = (
|
397 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
398 |
+
if not USE_PEFT_BACKEND
|
399 |
+
else self.proj_out(hidden_states)
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
hidden_states = (
|
403 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
404 |
+
if not USE_PEFT_BACKEND
|
405 |
+
else self.proj_out(hidden_states)
|
406 |
+
)
|
407 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
408 |
+
|
409 |
+
output = hidden_states + residual
|
410 |
+
elif self.is_input_vectorized:
|
411 |
+
hidden_states = self.norm_out(hidden_states)
|
412 |
+
logits = self.out(hidden_states)
|
413 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
414 |
+
logits = logits.permute(0, 2, 1)
|
415 |
+
|
416 |
+
# log(p(x_0))
|
417 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
418 |
+
|
419 |
+
if self.is_input_patches:
|
420 |
+
if self.config.norm_type != "ada_norm_single":
|
421 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
422 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
423 |
+
)
|
424 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
425 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
426 |
+
hidden_states = self.proj_out_2(hidden_states)
|
427 |
+
elif self.config.norm_type == "ada_norm_single":
|
428 |
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
429 |
+
hidden_states = self.norm_out(hidden_states)
|
430 |
+
# Modulation
|
431 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
432 |
+
hidden_states = self.proj_out(hidden_states)
|
433 |
+
hidden_states = hidden_states.squeeze(1)
|
434 |
+
|
435 |
+
# unpatchify
|
436 |
+
if self.adaln_single is None:
|
437 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
438 |
+
hidden_states = hidden_states.reshape(
|
439 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
440 |
+
)
|
441 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
442 |
+
output = hidden_states.reshape(
|
443 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
444 |
+
)
|
445 |
+
|
446 |
+
if not return_dict:
|
447 |
+
return (output,), spatial_attn_inputs
|
448 |
+
|
449 |
+
return Transformer2DModelOutput(sample=output), spatial_attn_inputs
|
ootd/pipelines_ootd/transformer_vton_2d.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import Any, Dict, Optional
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from torch import nn
|
22 |
+
|
23 |
+
from .attention_vton import BasicTransformerBlock
|
24 |
+
|
25 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
26 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
27 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate
|
28 |
+
# from diffusers.models.attention import BasicTransformerBlock
|
29 |
+
from diffusers.models.embeddings import CaptionProjection, PatchEmbed
|
30 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
31 |
+
from diffusers.models.modeling_utils import ModelMixin
|
32 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class Transformer2DModelOutput(BaseOutput):
|
37 |
+
"""
|
38 |
+
The output of [`Transformer2DModel`].
|
39 |
+
|
40 |
+
Args:
|
41 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
42 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
43 |
+
distributions for the unnoised latent pixels.
|
44 |
+
"""
|
45 |
+
|
46 |
+
sample: torch.FloatTensor
|
47 |
+
|
48 |
+
|
49 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
50 |
+
"""
|
51 |
+
A 2D Transformer model for image-like data.
|
52 |
+
|
53 |
+
Parameters:
|
54 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
55 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
56 |
+
in_channels (`int`, *optional*):
|
57 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
58 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
59 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
60 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
61 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
62 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
63 |
+
num_vector_embeds (`int`, *optional*):
|
64 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
65 |
+
Includes the class for the masked latent pixel.
|
66 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
67 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
68 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
69 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
70 |
+
added to the hidden states.
|
71 |
+
|
72 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
73 |
+
attention_bias (`bool`, *optional*):
|
74 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
75 |
+
"""
|
76 |
+
|
77 |
+
@register_to_config
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
num_attention_heads: int = 16,
|
81 |
+
attention_head_dim: int = 88,
|
82 |
+
in_channels: Optional[int] = None,
|
83 |
+
out_channels: Optional[int] = None,
|
84 |
+
num_layers: int = 1,
|
85 |
+
dropout: float = 0.0,
|
86 |
+
norm_num_groups: int = 32,
|
87 |
+
cross_attention_dim: Optional[int] = None,
|
88 |
+
attention_bias: bool = False,
|
89 |
+
sample_size: Optional[int] = None,
|
90 |
+
num_vector_embeds: Optional[int] = None,
|
91 |
+
patch_size: Optional[int] = None,
|
92 |
+
activation_fn: str = "geglu",
|
93 |
+
num_embeds_ada_norm: Optional[int] = None,
|
94 |
+
use_linear_projection: bool = False,
|
95 |
+
only_cross_attention: bool = False,
|
96 |
+
double_self_attention: bool = False,
|
97 |
+
upcast_attention: bool = False,
|
98 |
+
norm_type: str = "layer_norm",
|
99 |
+
norm_elementwise_affine: bool = True,
|
100 |
+
norm_eps: float = 1e-5,
|
101 |
+
attention_type: str = "default",
|
102 |
+
caption_channels: int = None,
|
103 |
+
):
|
104 |
+
super().__init__()
|
105 |
+
self.use_linear_projection = use_linear_projection
|
106 |
+
self.num_attention_heads = num_attention_heads
|
107 |
+
self.attention_head_dim = attention_head_dim
|
108 |
+
inner_dim = num_attention_heads * attention_head_dim
|
109 |
+
|
110 |
+
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
111 |
+
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
112 |
+
|
113 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
114 |
+
# Define whether input is continuous or discrete depending on configuration
|
115 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
116 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
117 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
118 |
+
|
119 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
120 |
+
deprecation_message = (
|
121 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
122 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
123 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
124 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
125 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
126 |
+
)
|
127 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
128 |
+
norm_type = "ada_norm"
|
129 |
+
|
130 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
131 |
+
raise ValueError(
|
132 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
133 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
134 |
+
)
|
135 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
136 |
+
raise ValueError(
|
137 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
138 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
139 |
+
)
|
140 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
141 |
+
raise ValueError(
|
142 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
143 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
144 |
+
)
|
145 |
+
|
146 |
+
# 2. Define input layers
|
147 |
+
if self.is_input_continuous:
|
148 |
+
self.in_channels = in_channels
|
149 |
+
|
150 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
151 |
+
if use_linear_projection:
|
152 |
+
self.proj_in = linear_cls(in_channels, inner_dim)
|
153 |
+
else:
|
154 |
+
self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
155 |
+
elif self.is_input_vectorized:
|
156 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
157 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
158 |
+
|
159 |
+
self.height = sample_size
|
160 |
+
self.width = sample_size
|
161 |
+
self.num_vector_embeds = num_vector_embeds
|
162 |
+
self.num_latent_pixels = self.height * self.width
|
163 |
+
|
164 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
165 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
166 |
+
)
|
167 |
+
elif self.is_input_patches:
|
168 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
169 |
+
|
170 |
+
self.height = sample_size
|
171 |
+
self.width = sample_size
|
172 |
+
|
173 |
+
self.patch_size = patch_size
|
174 |
+
interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
|
175 |
+
interpolation_scale = max(interpolation_scale, 1)
|
176 |
+
self.pos_embed = PatchEmbed(
|
177 |
+
height=sample_size,
|
178 |
+
width=sample_size,
|
179 |
+
patch_size=patch_size,
|
180 |
+
in_channels=in_channels,
|
181 |
+
embed_dim=inner_dim,
|
182 |
+
interpolation_scale=interpolation_scale,
|
183 |
+
)
|
184 |
+
|
185 |
+
# 3. Define transformers blocks
|
186 |
+
self.transformer_blocks = nn.ModuleList(
|
187 |
+
[
|
188 |
+
BasicTransformerBlock(
|
189 |
+
inner_dim,
|
190 |
+
num_attention_heads,
|
191 |
+
attention_head_dim,
|
192 |
+
dropout=dropout,
|
193 |
+
cross_attention_dim=cross_attention_dim,
|
194 |
+
activation_fn=activation_fn,
|
195 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
196 |
+
attention_bias=attention_bias,
|
197 |
+
only_cross_attention=only_cross_attention,
|
198 |
+
double_self_attention=double_self_attention,
|
199 |
+
upcast_attention=upcast_attention,
|
200 |
+
norm_type=norm_type,
|
201 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
202 |
+
norm_eps=norm_eps,
|
203 |
+
attention_type=attention_type,
|
204 |
+
)
|
205 |
+
for d in range(num_layers)
|
206 |
+
]
|
207 |
+
)
|
208 |
+
|
209 |
+
# 4. Define output layers
|
210 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
211 |
+
if self.is_input_continuous:
|
212 |
+
# TODO: should use out_channels for continuous projections
|
213 |
+
if use_linear_projection:
|
214 |
+
self.proj_out = linear_cls(inner_dim, in_channels)
|
215 |
+
else:
|
216 |
+
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
217 |
+
elif self.is_input_vectorized:
|
218 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
219 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
220 |
+
elif self.is_input_patches and norm_type != "ada_norm_single":
|
221 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
222 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
223 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
224 |
+
elif self.is_input_patches and norm_type == "ada_norm_single":
|
225 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
226 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
227 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
228 |
+
|
229 |
+
# 5. PixArt-Alpha blocks.
|
230 |
+
self.adaln_single = None
|
231 |
+
self.use_additional_conditions = False
|
232 |
+
if norm_type == "ada_norm_single":
|
233 |
+
self.use_additional_conditions = self.config.sample_size == 128
|
234 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
235 |
+
# additional conditions until we find better name
|
236 |
+
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
|
237 |
+
|
238 |
+
self.caption_projection = None
|
239 |
+
if caption_channels is not None:
|
240 |
+
self.caption_projection = CaptionProjection(in_features=caption_channels, hidden_size=inner_dim)
|
241 |
+
|
242 |
+
self.gradient_checkpointing = False
|
243 |
+
|
244 |
+
def forward(
|
245 |
+
self,
|
246 |
+
hidden_states: torch.Tensor,
|
247 |
+
spatial_attn_inputs = [],
|
248 |
+
spatial_attn_idx = 0,
|
249 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
250 |
+
timestep: Optional[torch.LongTensor] = None,
|
251 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
252 |
+
class_labels: Optional[torch.LongTensor] = None,
|
253 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
254 |
+
attention_mask: Optional[torch.Tensor] = None,
|
255 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
256 |
+
return_dict: bool = True,
|
257 |
+
):
|
258 |
+
"""
|
259 |
+
The [`Transformer2DModel`] forward method.
|
260 |
+
|
261 |
+
Args:
|
262 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
263 |
+
Input `hidden_states`.
|
264 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
265 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
266 |
+
self-attention.
|
267 |
+
timestep ( `torch.LongTensor`, *optional*):
|
268 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
269 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
270 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
271 |
+
`AdaLayerZeroNorm`.
|
272 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
273 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
274 |
+
`self.processor` in
|
275 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
276 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
277 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
278 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
279 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
280 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
281 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
282 |
+
|
283 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
284 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
285 |
+
|
286 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
287 |
+
above. This bias will be added to the cross-attention scores.
|
288 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
289 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
290 |
+
tuple.
|
291 |
+
|
292 |
+
Returns:
|
293 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
294 |
+
`tuple` where the first element is the sample tensor.
|
295 |
+
"""
|
296 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
297 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
298 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
299 |
+
# expects mask of shape:
|
300 |
+
# [batch, key_tokens]
|
301 |
+
# adds singleton query_tokens dimension:
|
302 |
+
# [batch, 1, key_tokens]
|
303 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
304 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
305 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
306 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
307 |
+
# assume that mask is expressed as:
|
308 |
+
# (1 = keep, 0 = discard)
|
309 |
+
# convert mask into a bias that can be added to attention scores:
|
310 |
+
# (keep = +0, discard = -10000.0)
|
311 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
312 |
+
attention_mask = attention_mask.unsqueeze(1)
|
313 |
+
|
314 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
315 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
316 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
317 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
318 |
+
|
319 |
+
# Retrieve lora scale.
|
320 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
321 |
+
|
322 |
+
# 1. Input
|
323 |
+
if self.is_input_continuous:
|
324 |
+
batch, _, height, width = hidden_states.shape
|
325 |
+
residual = hidden_states
|
326 |
+
|
327 |
+
hidden_states = self.norm(hidden_states)
|
328 |
+
if not self.use_linear_projection:
|
329 |
+
hidden_states = (
|
330 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
331 |
+
if not USE_PEFT_BACKEND
|
332 |
+
else self.proj_in(hidden_states)
|
333 |
+
)
|
334 |
+
inner_dim = hidden_states.shape[1]
|
335 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
336 |
+
else:
|
337 |
+
inner_dim = hidden_states.shape[1]
|
338 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
339 |
+
hidden_states = (
|
340 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
341 |
+
if not USE_PEFT_BACKEND
|
342 |
+
else self.proj_in(hidden_states)
|
343 |
+
)
|
344 |
+
|
345 |
+
elif self.is_input_vectorized:
|
346 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
347 |
+
elif self.is_input_patches:
|
348 |
+
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
349 |
+
hidden_states = self.pos_embed(hidden_states)
|
350 |
+
|
351 |
+
if self.adaln_single is not None:
|
352 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
353 |
+
raise ValueError(
|
354 |
+
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
355 |
+
)
|
356 |
+
batch_size = hidden_states.shape[0]
|
357 |
+
timestep, embedded_timestep = self.adaln_single(
|
358 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
359 |
+
)
|
360 |
+
|
361 |
+
# 2. Blocks
|
362 |
+
if self.caption_projection is not None:
|
363 |
+
batch_size = hidden_states.shape[0]
|
364 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
365 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
366 |
+
|
367 |
+
for block in self.transformer_blocks:
|
368 |
+
if self.training and self.gradient_checkpointing:
|
369 |
+
hidden_states, spatial_attn_inputs, spatial_attn_idx = torch.utils.checkpoint.checkpoint(
|
370 |
+
block,
|
371 |
+
hidden_states,
|
372 |
+
spatial_attn_inputs,
|
373 |
+
spatial_attn_idx,
|
374 |
+
attention_mask,
|
375 |
+
encoder_hidden_states,
|
376 |
+
encoder_attention_mask,
|
377 |
+
timestep,
|
378 |
+
cross_attention_kwargs,
|
379 |
+
class_labels,
|
380 |
+
use_reentrant=False,
|
381 |
+
)
|
382 |
+
else:
|
383 |
+
hidden_states, spatial_attn_inputs, spatial_attn_idx = block(
|
384 |
+
hidden_states,
|
385 |
+
spatial_attn_inputs,
|
386 |
+
spatial_attn_idx,
|
387 |
+
attention_mask=attention_mask,
|
388 |
+
encoder_hidden_states=encoder_hidden_states,
|
389 |
+
encoder_attention_mask=encoder_attention_mask,
|
390 |
+
timestep=timestep,
|
391 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
392 |
+
class_labels=class_labels,
|
393 |
+
)
|
394 |
+
|
395 |
+
# 3. Output
|
396 |
+
if self.is_input_continuous:
|
397 |
+
if not self.use_linear_projection:
|
398 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
399 |
+
hidden_states = (
|
400 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
401 |
+
if not USE_PEFT_BACKEND
|
402 |
+
else self.proj_out(hidden_states)
|
403 |
+
)
|
404 |
+
else:
|
405 |
+
hidden_states = (
|
406 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
407 |
+
if not USE_PEFT_BACKEND
|
408 |
+
else self.proj_out(hidden_states)
|
409 |
+
)
|
410 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
411 |
+
|
412 |
+
output = hidden_states + residual
|
413 |
+
elif self.is_input_vectorized:
|
414 |
+
hidden_states = self.norm_out(hidden_states)
|
415 |
+
logits = self.out(hidden_states)
|
416 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
417 |
+
logits = logits.permute(0, 2, 1)
|
418 |
+
|
419 |
+
# log(p(x_0))
|
420 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
421 |
+
|
422 |
+
if self.is_input_patches:
|
423 |
+
if self.config.norm_type != "ada_norm_single":
|
424 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
425 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
426 |
+
)
|
427 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
428 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
429 |
+
hidden_states = self.proj_out_2(hidden_states)
|
430 |
+
elif self.config.norm_type == "ada_norm_single":
|
431 |
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
432 |
+
hidden_states = self.norm_out(hidden_states)
|
433 |
+
# Modulation
|
434 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
435 |
+
hidden_states = self.proj_out(hidden_states)
|
436 |
+
hidden_states = hidden_states.squeeze(1)
|
437 |
+
|
438 |
+
# unpatchify
|
439 |
+
if self.adaln_single is None:
|
440 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
441 |
+
hidden_states = hidden_states.reshape(
|
442 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
443 |
+
)
|
444 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
445 |
+
output = hidden_states.reshape(
|
446 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
447 |
+
)
|
448 |
+
|
449 |
+
if not return_dict:
|
450 |
+
return (output,), spatial_attn_inputs, spatial_attn_idx
|
451 |
+
|
452 |
+
return Transformer2DModelOutput(sample=output), spatial_attn_inputs, spatial_attn_idx
|
ootd/pipelines_ootd/unet_garm_2d_blocks.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ootd/pipelines_ootd/unet_garm_2d_condition.py
ADDED
@@ -0,0 +1,1183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
|
23 |
+
from .unet_garm_2d_blocks import (
|
24 |
+
UNetMidBlock2D,
|
25 |
+
UNetMidBlock2DCrossAttn,
|
26 |
+
UNetMidBlock2DSimpleCrossAttn,
|
27 |
+
get_down_block,
|
28 |
+
get_up_block,
|
29 |
+
)
|
30 |
+
|
31 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
32 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
33 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
34 |
+
from diffusers.models.activations import get_activation
|
35 |
+
from diffusers.models.attention_processor import (
|
36 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
37 |
+
CROSS_ATTENTION_PROCESSORS,
|
38 |
+
AttentionProcessor,
|
39 |
+
AttnAddedKVProcessor,
|
40 |
+
AttnProcessor,
|
41 |
+
)
|
42 |
+
from diffusers.models.embeddings import (
|
43 |
+
GaussianFourierProjection,
|
44 |
+
ImageHintTimeEmbedding,
|
45 |
+
ImageProjection,
|
46 |
+
ImageTimeEmbedding,
|
47 |
+
PositionNet,
|
48 |
+
TextImageProjection,
|
49 |
+
TextImageTimeEmbedding,
|
50 |
+
TextTimeEmbedding,
|
51 |
+
TimestepEmbedding,
|
52 |
+
Timesteps,
|
53 |
+
)
|
54 |
+
from diffusers.models.modeling_utils import ModelMixin
|
55 |
+
# from diffusers.models.unet_2d_blocks import (
|
56 |
+
# UNetMidBlock2D,
|
57 |
+
# UNetMidBlock2DCrossAttn,
|
58 |
+
# UNetMidBlock2DSimpleCrossAttn,
|
59 |
+
# get_down_block,
|
60 |
+
# get_up_block,
|
61 |
+
# )
|
62 |
+
|
63 |
+
|
64 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
65 |
+
|
66 |
+
|
67 |
+
@dataclass
|
68 |
+
class UNet2DConditionOutput(BaseOutput):
|
69 |
+
"""
|
70 |
+
The output of [`UNet2DConditionModel`].
|
71 |
+
|
72 |
+
Args:
|
73 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
74 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
75 |
+
"""
|
76 |
+
|
77 |
+
sample: torch.FloatTensor = None
|
78 |
+
|
79 |
+
|
80 |
+
class UNetGarm2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
81 |
+
r"""
|
82 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
83 |
+
shaped output.
|
84 |
+
|
85 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
86 |
+
for all models (such as downloading or saving).
|
87 |
+
|
88 |
+
Parameters:
|
89 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
90 |
+
Height and width of input/output sample.
|
91 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
92 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
93 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
94 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
95 |
+
Whether to flip the sin to cos in the time embedding.
|
96 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
97 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
98 |
+
The tuple of downsample blocks to use.
|
99 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
100 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
101 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
102 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
103 |
+
The tuple of upsample blocks to use.
|
104 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
105 |
+
Whether to include self-attention in the basic transformer blocks, see
|
106 |
+
[`~models.attention.BasicTransformerBlock`].
|
107 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
108 |
+
The tuple of output channels for each block.
|
109 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
110 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
111 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
112 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
113 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
114 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
115 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
116 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
117 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
118 |
+
The dimension of the cross attention features.
|
119 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
120 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
121 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
122 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
123 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
124 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
125 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
126 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
127 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
128 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
129 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
130 |
+
dimension to `cross_attention_dim`.
|
131 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
132 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
133 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
134 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
135 |
+
num_attention_heads (`int`, *optional*):
|
136 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
137 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
138 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
139 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
140 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
141 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
142 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
143 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
144 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
145 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
146 |
+
Dimension for the timestep embeddings.
|
147 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
148 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
149 |
+
class conditioning with `class_embed_type` equal to `None`.
|
150 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
151 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
152 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
153 |
+
An optional override for the dimension of the projected time embedding.
|
154 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
155 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
156 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
157 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
158 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
159 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
160 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
161 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
162 |
+
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
163 |
+
*optional*): The dimension of the `class_labels` input when
|
164 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
165 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
166 |
+
embeddings with the class embeddings.
|
167 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
168 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
169 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
170 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
171 |
+
otherwise.
|
172 |
+
"""
|
173 |
+
|
174 |
+
_supports_gradient_checkpointing = True
|
175 |
+
|
176 |
+
@register_to_config
|
177 |
+
def __init__(
|
178 |
+
self,
|
179 |
+
sample_size: Optional[int] = None,
|
180 |
+
in_channels: int = 4,
|
181 |
+
out_channels: int = 4,
|
182 |
+
center_input_sample: bool = False,
|
183 |
+
flip_sin_to_cos: bool = True,
|
184 |
+
freq_shift: int = 0,
|
185 |
+
down_block_types: Tuple[str] = (
|
186 |
+
"CrossAttnDownBlock2D",
|
187 |
+
"CrossAttnDownBlock2D",
|
188 |
+
"CrossAttnDownBlock2D",
|
189 |
+
"DownBlock2D",
|
190 |
+
),
|
191 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
192 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
193 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
194 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
195 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
196 |
+
downsample_padding: int = 1,
|
197 |
+
mid_block_scale_factor: float = 1,
|
198 |
+
dropout: float = 0.0,
|
199 |
+
act_fn: str = "silu",
|
200 |
+
norm_num_groups: Optional[int] = 32,
|
201 |
+
norm_eps: float = 1e-5,
|
202 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
203 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
204 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
205 |
+
encoder_hid_dim: Optional[int] = None,
|
206 |
+
encoder_hid_dim_type: Optional[str] = None,
|
207 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
208 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
209 |
+
dual_cross_attention: bool = False,
|
210 |
+
use_linear_projection: bool = False,
|
211 |
+
class_embed_type: Optional[str] = None,
|
212 |
+
addition_embed_type: Optional[str] = None,
|
213 |
+
addition_time_embed_dim: Optional[int] = None,
|
214 |
+
num_class_embeds: Optional[int] = None,
|
215 |
+
upcast_attention: bool = False,
|
216 |
+
resnet_time_scale_shift: str = "default",
|
217 |
+
resnet_skip_time_act: bool = False,
|
218 |
+
resnet_out_scale_factor: int = 1.0,
|
219 |
+
time_embedding_type: str = "positional",
|
220 |
+
time_embedding_dim: Optional[int] = None,
|
221 |
+
time_embedding_act_fn: Optional[str] = None,
|
222 |
+
timestep_post_act: Optional[str] = None,
|
223 |
+
time_cond_proj_dim: Optional[int] = None,
|
224 |
+
conv_in_kernel: int = 3,
|
225 |
+
conv_out_kernel: int = 3,
|
226 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
227 |
+
attention_type: str = "default",
|
228 |
+
class_embeddings_concat: bool = False,
|
229 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
230 |
+
cross_attention_norm: Optional[str] = None,
|
231 |
+
addition_embed_type_num_heads=64,
|
232 |
+
):
|
233 |
+
super().__init__()
|
234 |
+
|
235 |
+
self.sample_size = sample_size
|
236 |
+
|
237 |
+
if num_attention_heads is not None:
|
238 |
+
raise ValueError(
|
239 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
240 |
+
)
|
241 |
+
|
242 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
243 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
244 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
245 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
246 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
247 |
+
# which is why we correct for the naming here.
|
248 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
249 |
+
|
250 |
+
# Check inputs
|
251 |
+
if len(down_block_types) != len(up_block_types):
|
252 |
+
raise ValueError(
|
253 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
254 |
+
)
|
255 |
+
|
256 |
+
if len(block_out_channels) != len(down_block_types):
|
257 |
+
raise ValueError(
|
258 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
259 |
+
)
|
260 |
+
|
261 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
262 |
+
raise ValueError(
|
263 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
264 |
+
)
|
265 |
+
|
266 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
267 |
+
raise ValueError(
|
268 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
269 |
+
)
|
270 |
+
|
271 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
272 |
+
raise ValueError(
|
273 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
274 |
+
)
|
275 |
+
|
276 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
277 |
+
raise ValueError(
|
278 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
279 |
+
)
|
280 |
+
|
281 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
282 |
+
raise ValueError(
|
283 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
284 |
+
)
|
285 |
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
286 |
+
for layer_number_per_block in transformer_layers_per_block:
|
287 |
+
if isinstance(layer_number_per_block, list):
|
288 |
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
289 |
+
|
290 |
+
# input
|
291 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
292 |
+
self.conv_in = nn.Conv2d(
|
293 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
294 |
+
)
|
295 |
+
|
296 |
+
# time
|
297 |
+
if time_embedding_type == "fourier":
|
298 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
299 |
+
if time_embed_dim % 2 != 0:
|
300 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
301 |
+
self.time_proj = GaussianFourierProjection(
|
302 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
303 |
+
)
|
304 |
+
timestep_input_dim = time_embed_dim
|
305 |
+
elif time_embedding_type == "positional":
|
306 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
307 |
+
|
308 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
309 |
+
timestep_input_dim = block_out_channels[0]
|
310 |
+
else:
|
311 |
+
raise ValueError(
|
312 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
313 |
+
)
|
314 |
+
|
315 |
+
self.time_embedding = TimestepEmbedding(
|
316 |
+
timestep_input_dim,
|
317 |
+
time_embed_dim,
|
318 |
+
act_fn=act_fn,
|
319 |
+
post_act_fn=timestep_post_act,
|
320 |
+
cond_proj_dim=time_cond_proj_dim,
|
321 |
+
)
|
322 |
+
|
323 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
324 |
+
encoder_hid_dim_type = "text_proj"
|
325 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
326 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
327 |
+
|
328 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
329 |
+
raise ValueError(
|
330 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
331 |
+
)
|
332 |
+
|
333 |
+
if encoder_hid_dim_type == "text_proj":
|
334 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
335 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
336 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
337 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
338 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
339 |
+
self.encoder_hid_proj = TextImageProjection(
|
340 |
+
text_embed_dim=encoder_hid_dim,
|
341 |
+
image_embed_dim=cross_attention_dim,
|
342 |
+
cross_attention_dim=cross_attention_dim,
|
343 |
+
)
|
344 |
+
elif encoder_hid_dim_type == "image_proj":
|
345 |
+
# Kandinsky 2.2
|
346 |
+
self.encoder_hid_proj = ImageProjection(
|
347 |
+
image_embed_dim=encoder_hid_dim,
|
348 |
+
cross_attention_dim=cross_attention_dim,
|
349 |
+
)
|
350 |
+
elif encoder_hid_dim_type is not None:
|
351 |
+
raise ValueError(
|
352 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
353 |
+
)
|
354 |
+
else:
|
355 |
+
self.encoder_hid_proj = None
|
356 |
+
|
357 |
+
# class embedding
|
358 |
+
if class_embed_type is None and num_class_embeds is not None:
|
359 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
360 |
+
elif class_embed_type == "timestep":
|
361 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
362 |
+
elif class_embed_type == "identity":
|
363 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
364 |
+
elif class_embed_type == "projection":
|
365 |
+
if projection_class_embeddings_input_dim is None:
|
366 |
+
raise ValueError(
|
367 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
368 |
+
)
|
369 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
370 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
371 |
+
# 2. it projects from an arbitrary input dimension.
|
372 |
+
#
|
373 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
374 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
375 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
376 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
377 |
+
elif class_embed_type == "simple_projection":
|
378 |
+
if projection_class_embeddings_input_dim is None:
|
379 |
+
raise ValueError(
|
380 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
381 |
+
)
|
382 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
383 |
+
else:
|
384 |
+
self.class_embedding = None
|
385 |
+
|
386 |
+
if addition_embed_type == "text":
|
387 |
+
if encoder_hid_dim is not None:
|
388 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
389 |
+
else:
|
390 |
+
text_time_embedding_from_dim = cross_attention_dim
|
391 |
+
|
392 |
+
self.add_embedding = TextTimeEmbedding(
|
393 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
394 |
+
)
|
395 |
+
elif addition_embed_type == "text_image":
|
396 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
397 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
398 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
399 |
+
self.add_embedding = TextImageTimeEmbedding(
|
400 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
401 |
+
)
|
402 |
+
elif addition_embed_type == "text_time":
|
403 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
404 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
405 |
+
elif addition_embed_type == "image":
|
406 |
+
# Kandinsky 2.2
|
407 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
408 |
+
elif addition_embed_type == "image_hint":
|
409 |
+
# Kandinsky 2.2 ControlNet
|
410 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
411 |
+
elif addition_embed_type is not None:
|
412 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
413 |
+
|
414 |
+
if time_embedding_act_fn is None:
|
415 |
+
self.time_embed_act = None
|
416 |
+
else:
|
417 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
418 |
+
|
419 |
+
self.down_blocks = nn.ModuleList([])
|
420 |
+
self.up_blocks = nn.ModuleList([])
|
421 |
+
|
422 |
+
if isinstance(only_cross_attention, bool):
|
423 |
+
if mid_block_only_cross_attention is None:
|
424 |
+
mid_block_only_cross_attention = only_cross_attention
|
425 |
+
|
426 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
427 |
+
|
428 |
+
if mid_block_only_cross_attention is None:
|
429 |
+
mid_block_only_cross_attention = False
|
430 |
+
|
431 |
+
if isinstance(num_attention_heads, int):
|
432 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
433 |
+
|
434 |
+
if isinstance(attention_head_dim, int):
|
435 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
436 |
+
|
437 |
+
if isinstance(cross_attention_dim, int):
|
438 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
439 |
+
|
440 |
+
if isinstance(layers_per_block, int):
|
441 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
442 |
+
|
443 |
+
if isinstance(transformer_layers_per_block, int):
|
444 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
445 |
+
|
446 |
+
if class_embeddings_concat:
|
447 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
448 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
449 |
+
# regular time embeddings
|
450 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
451 |
+
else:
|
452 |
+
blocks_time_embed_dim = time_embed_dim
|
453 |
+
|
454 |
+
# down
|
455 |
+
output_channel = block_out_channels[0]
|
456 |
+
for i, down_block_type in enumerate(down_block_types):
|
457 |
+
input_channel = output_channel
|
458 |
+
output_channel = block_out_channels[i]
|
459 |
+
is_final_block = i == len(block_out_channels) - 1
|
460 |
+
|
461 |
+
down_block = get_down_block(
|
462 |
+
down_block_type,
|
463 |
+
num_layers=layers_per_block[i],
|
464 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
465 |
+
in_channels=input_channel,
|
466 |
+
out_channels=output_channel,
|
467 |
+
temb_channels=blocks_time_embed_dim,
|
468 |
+
add_downsample=not is_final_block,
|
469 |
+
resnet_eps=norm_eps,
|
470 |
+
resnet_act_fn=act_fn,
|
471 |
+
resnet_groups=norm_num_groups,
|
472 |
+
cross_attention_dim=cross_attention_dim[i],
|
473 |
+
num_attention_heads=num_attention_heads[i],
|
474 |
+
downsample_padding=downsample_padding,
|
475 |
+
dual_cross_attention=dual_cross_attention,
|
476 |
+
use_linear_projection=use_linear_projection,
|
477 |
+
only_cross_attention=only_cross_attention[i],
|
478 |
+
upcast_attention=upcast_attention,
|
479 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
480 |
+
attention_type=attention_type,
|
481 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
482 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
483 |
+
cross_attention_norm=cross_attention_norm,
|
484 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
485 |
+
dropout=dropout,
|
486 |
+
)
|
487 |
+
self.down_blocks.append(down_block)
|
488 |
+
|
489 |
+
# mid
|
490 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
491 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
492 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
493 |
+
in_channels=block_out_channels[-1],
|
494 |
+
temb_channels=blocks_time_embed_dim,
|
495 |
+
dropout=dropout,
|
496 |
+
resnet_eps=norm_eps,
|
497 |
+
resnet_act_fn=act_fn,
|
498 |
+
output_scale_factor=mid_block_scale_factor,
|
499 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
500 |
+
cross_attention_dim=cross_attention_dim[-1],
|
501 |
+
num_attention_heads=num_attention_heads[-1],
|
502 |
+
resnet_groups=norm_num_groups,
|
503 |
+
dual_cross_attention=dual_cross_attention,
|
504 |
+
use_linear_projection=use_linear_projection,
|
505 |
+
upcast_attention=upcast_attention,
|
506 |
+
attention_type=attention_type,
|
507 |
+
)
|
508 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
509 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
510 |
+
in_channels=block_out_channels[-1],
|
511 |
+
temb_channels=blocks_time_embed_dim,
|
512 |
+
dropout=dropout,
|
513 |
+
resnet_eps=norm_eps,
|
514 |
+
resnet_act_fn=act_fn,
|
515 |
+
output_scale_factor=mid_block_scale_factor,
|
516 |
+
cross_attention_dim=cross_attention_dim[-1],
|
517 |
+
attention_head_dim=attention_head_dim[-1],
|
518 |
+
resnet_groups=norm_num_groups,
|
519 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
520 |
+
skip_time_act=resnet_skip_time_act,
|
521 |
+
only_cross_attention=mid_block_only_cross_attention,
|
522 |
+
cross_attention_norm=cross_attention_norm,
|
523 |
+
)
|
524 |
+
elif mid_block_type == "UNetMidBlock2D":
|
525 |
+
self.mid_block = UNetMidBlock2D(
|
526 |
+
in_channels=block_out_channels[-1],
|
527 |
+
temb_channels=blocks_time_embed_dim,
|
528 |
+
dropout=dropout,
|
529 |
+
num_layers=0,
|
530 |
+
resnet_eps=norm_eps,
|
531 |
+
resnet_act_fn=act_fn,
|
532 |
+
output_scale_factor=mid_block_scale_factor,
|
533 |
+
resnet_groups=norm_num_groups,
|
534 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
535 |
+
add_attention=False,
|
536 |
+
)
|
537 |
+
elif mid_block_type is None:
|
538 |
+
self.mid_block = None
|
539 |
+
else:
|
540 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
541 |
+
|
542 |
+
# count how many layers upsample the images
|
543 |
+
self.num_upsamplers = 0
|
544 |
+
|
545 |
+
# up
|
546 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
547 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
548 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
549 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
550 |
+
reversed_transformer_layers_per_block = (
|
551 |
+
list(reversed(transformer_layers_per_block))
|
552 |
+
if reverse_transformer_layers_per_block is None
|
553 |
+
else reverse_transformer_layers_per_block
|
554 |
+
)
|
555 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
556 |
+
|
557 |
+
output_channel = reversed_block_out_channels[0]
|
558 |
+
for i, up_block_type in enumerate(up_block_types):
|
559 |
+
is_final_block = i == len(block_out_channels) - 1
|
560 |
+
|
561 |
+
prev_output_channel = output_channel
|
562 |
+
output_channel = reversed_block_out_channels[i]
|
563 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
564 |
+
|
565 |
+
# add upsample block for all BUT final layer
|
566 |
+
if not is_final_block:
|
567 |
+
add_upsample = True
|
568 |
+
self.num_upsamplers += 1
|
569 |
+
else:
|
570 |
+
add_upsample = False
|
571 |
+
|
572 |
+
up_block = get_up_block(
|
573 |
+
up_block_type,
|
574 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
575 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
576 |
+
in_channels=input_channel,
|
577 |
+
out_channels=output_channel,
|
578 |
+
prev_output_channel=prev_output_channel,
|
579 |
+
temb_channels=blocks_time_embed_dim,
|
580 |
+
add_upsample=add_upsample,
|
581 |
+
resnet_eps=norm_eps,
|
582 |
+
resnet_act_fn=act_fn,
|
583 |
+
resolution_idx=i,
|
584 |
+
resnet_groups=norm_num_groups,
|
585 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
586 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
587 |
+
dual_cross_attention=dual_cross_attention,
|
588 |
+
use_linear_projection=use_linear_projection,
|
589 |
+
only_cross_attention=only_cross_attention[i],
|
590 |
+
upcast_attention=upcast_attention,
|
591 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
592 |
+
attention_type=attention_type,
|
593 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
594 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
595 |
+
cross_attention_norm=cross_attention_norm,
|
596 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
597 |
+
dropout=dropout,
|
598 |
+
)
|
599 |
+
self.up_blocks.append(up_block)
|
600 |
+
prev_output_channel = output_channel
|
601 |
+
|
602 |
+
# out
|
603 |
+
if norm_num_groups is not None:
|
604 |
+
self.conv_norm_out = nn.GroupNorm(
|
605 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
606 |
+
)
|
607 |
+
|
608 |
+
self.conv_act = get_activation(act_fn)
|
609 |
+
|
610 |
+
else:
|
611 |
+
self.conv_norm_out = None
|
612 |
+
self.conv_act = None
|
613 |
+
|
614 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
615 |
+
self.conv_out = nn.Conv2d(
|
616 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
617 |
+
)
|
618 |
+
|
619 |
+
if attention_type in ["gated", "gated-text-image"]:
|
620 |
+
positive_len = 768
|
621 |
+
if isinstance(cross_attention_dim, int):
|
622 |
+
positive_len = cross_attention_dim
|
623 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
624 |
+
positive_len = cross_attention_dim[0]
|
625 |
+
|
626 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
627 |
+
self.position_net = PositionNet(
|
628 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
629 |
+
)
|
630 |
+
|
631 |
+
@property
|
632 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
633 |
+
r"""
|
634 |
+
Returns:
|
635 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
636 |
+
indexed by its weight name.
|
637 |
+
"""
|
638 |
+
# set recursively
|
639 |
+
processors = {}
|
640 |
+
|
641 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
642 |
+
if hasattr(module, "get_processor"):
|
643 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
644 |
+
|
645 |
+
for sub_name, child in module.named_children():
|
646 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
647 |
+
|
648 |
+
return processors
|
649 |
+
|
650 |
+
for name, module in self.named_children():
|
651 |
+
fn_recursive_add_processors(name, module, processors)
|
652 |
+
|
653 |
+
return processors
|
654 |
+
|
655 |
+
def set_attn_processor(
|
656 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
657 |
+
):
|
658 |
+
r"""
|
659 |
+
Sets the attention processor to use to compute attention.
|
660 |
+
|
661 |
+
Parameters:
|
662 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
663 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
664 |
+
for **all** `Attention` layers.
|
665 |
+
|
666 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
667 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
668 |
+
|
669 |
+
"""
|
670 |
+
count = len(self.attn_processors.keys())
|
671 |
+
|
672 |
+
if isinstance(processor, dict) and len(processor) != count:
|
673 |
+
raise ValueError(
|
674 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
675 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
676 |
+
)
|
677 |
+
|
678 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
679 |
+
if hasattr(module, "set_processor"):
|
680 |
+
if not isinstance(processor, dict):
|
681 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
682 |
+
else:
|
683 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
684 |
+
|
685 |
+
for sub_name, child in module.named_children():
|
686 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
687 |
+
|
688 |
+
for name, module in self.named_children():
|
689 |
+
fn_recursive_attn_processor(name, module, processor)
|
690 |
+
|
691 |
+
def set_default_attn_processor(self):
|
692 |
+
"""
|
693 |
+
Disables custom attention processors and sets the default attention implementation.
|
694 |
+
"""
|
695 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
696 |
+
processor = AttnAddedKVProcessor()
|
697 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
698 |
+
processor = AttnProcessor()
|
699 |
+
else:
|
700 |
+
raise ValueError(
|
701 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
702 |
+
)
|
703 |
+
|
704 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
705 |
+
|
706 |
+
def set_attention_slice(self, slice_size):
|
707 |
+
r"""
|
708 |
+
Enable sliced attention computation.
|
709 |
+
|
710 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
711 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
712 |
+
|
713 |
+
Args:
|
714 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
715 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
716 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
717 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
718 |
+
must be a multiple of `slice_size`.
|
719 |
+
"""
|
720 |
+
sliceable_head_dims = []
|
721 |
+
|
722 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
723 |
+
if hasattr(module, "set_attention_slice"):
|
724 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
725 |
+
|
726 |
+
for child in module.children():
|
727 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
728 |
+
|
729 |
+
# retrieve number of attention layers
|
730 |
+
for module in self.children():
|
731 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
732 |
+
|
733 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
734 |
+
|
735 |
+
if slice_size == "auto":
|
736 |
+
# half the attention head size is usually a good trade-off between
|
737 |
+
# speed and memory
|
738 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
739 |
+
elif slice_size == "max":
|
740 |
+
# make smallest slice possible
|
741 |
+
slice_size = num_sliceable_layers * [1]
|
742 |
+
|
743 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
744 |
+
|
745 |
+
if len(slice_size) != len(sliceable_head_dims):
|
746 |
+
raise ValueError(
|
747 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
748 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
749 |
+
)
|
750 |
+
|
751 |
+
for i in range(len(slice_size)):
|
752 |
+
size = slice_size[i]
|
753 |
+
dim = sliceable_head_dims[i]
|
754 |
+
if size is not None and size > dim:
|
755 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
756 |
+
|
757 |
+
# Recursively walk through all the children.
|
758 |
+
# Any children which exposes the set_attention_slice method
|
759 |
+
# gets the message
|
760 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
761 |
+
if hasattr(module, "set_attention_slice"):
|
762 |
+
module.set_attention_slice(slice_size.pop())
|
763 |
+
|
764 |
+
for child in module.children():
|
765 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
766 |
+
|
767 |
+
reversed_slice_size = list(reversed(slice_size))
|
768 |
+
for module in self.children():
|
769 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
770 |
+
|
771 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
772 |
+
if hasattr(module, "gradient_checkpointing"):
|
773 |
+
module.gradient_checkpointing = value
|
774 |
+
|
775 |
+
def enable_freeu(self, s1, s2, b1, b2):
|
776 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
777 |
+
|
778 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
779 |
+
|
780 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
781 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
782 |
+
|
783 |
+
Args:
|
784 |
+
s1 (`float`):
|
785 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
786 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
787 |
+
s2 (`float`):
|
788 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
789 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
790 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
791 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
792 |
+
"""
|
793 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
794 |
+
setattr(upsample_block, "s1", s1)
|
795 |
+
setattr(upsample_block, "s2", s2)
|
796 |
+
setattr(upsample_block, "b1", b1)
|
797 |
+
setattr(upsample_block, "b2", b2)
|
798 |
+
|
799 |
+
def disable_freeu(self):
|
800 |
+
"""Disables the FreeU mechanism."""
|
801 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
802 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
803 |
+
for k in freeu_keys:
|
804 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
805 |
+
setattr(upsample_block, k, None)
|
806 |
+
|
807 |
+
def forward(
|
808 |
+
self,
|
809 |
+
sample: torch.FloatTensor,
|
810 |
+
timestep: Union[torch.Tensor, float, int],
|
811 |
+
encoder_hidden_states: torch.Tensor,
|
812 |
+
class_labels: Optional[torch.Tensor] = None,
|
813 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
814 |
+
attention_mask: Optional[torch.Tensor] = None,
|
815 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
816 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
817 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
818 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
819 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
820 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
821 |
+
return_dict: bool = True,
|
822 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
823 |
+
r"""
|
824 |
+
The [`UNet2DConditionModel`] forward method.
|
825 |
+
|
826 |
+
Args:
|
827 |
+
sample (`torch.FloatTensor`):
|
828 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
829 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
830 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
831 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
832 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
833 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
834 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
835 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
836 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
837 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
838 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
839 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
840 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
841 |
+
cross_attention_kwargs (`dict`, *optional*):
|
842 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
843 |
+
`self.processor` in
|
844 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
845 |
+
added_cond_kwargs: (`dict`, *optional*):
|
846 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
847 |
+
are passed along to the UNet blocks.
|
848 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
849 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
850 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
851 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
852 |
+
encoder_attention_mask (`torch.Tensor`):
|
853 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
854 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
855 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
856 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
857 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
858 |
+
tuple.
|
859 |
+
cross_attention_kwargs (`dict`, *optional*):
|
860 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
861 |
+
added_cond_kwargs: (`dict`, *optional*):
|
862 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
863 |
+
are passed along to the UNet blocks.
|
864 |
+
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
865 |
+
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
866 |
+
example from ControlNet side model(s)
|
867 |
+
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
868 |
+
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
869 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
870 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
871 |
+
|
872 |
+
Returns:
|
873 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
874 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
875 |
+
a `tuple` is returned where the first element is the sample tensor.
|
876 |
+
"""
|
877 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
878 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
879 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
880 |
+
# on the fly if necessary.
|
881 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
882 |
+
|
883 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
884 |
+
forward_upsample_size = False
|
885 |
+
upsample_size = None
|
886 |
+
|
887 |
+
for dim in sample.shape[-2:]:
|
888 |
+
if dim % default_overall_up_factor != 0:
|
889 |
+
# Forward upsample size to force interpolation output size.
|
890 |
+
forward_upsample_size = True
|
891 |
+
break
|
892 |
+
|
893 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
894 |
+
# expects mask of shape:
|
895 |
+
# [batch, key_tokens]
|
896 |
+
# adds singleton query_tokens dimension:
|
897 |
+
# [batch, 1, key_tokens]
|
898 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
899 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
900 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
901 |
+
if attention_mask is not None:
|
902 |
+
# assume that mask is expressed as:
|
903 |
+
# (1 = keep, 0 = discard)
|
904 |
+
# convert mask into a bias that can be added to attention scores:
|
905 |
+
# (keep = +0, discard = -10000.0)
|
906 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
907 |
+
attention_mask = attention_mask.unsqueeze(1)
|
908 |
+
|
909 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
910 |
+
if encoder_attention_mask is not None:
|
911 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
912 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
913 |
+
|
914 |
+
# 0. center input if necessary
|
915 |
+
if self.config.center_input_sample:
|
916 |
+
sample = 2 * sample - 1.0
|
917 |
+
|
918 |
+
# 1. time
|
919 |
+
timesteps = timestep
|
920 |
+
if not torch.is_tensor(timesteps):
|
921 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
922 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
923 |
+
is_mps = sample.device.type == "mps"
|
924 |
+
if isinstance(timestep, float):
|
925 |
+
dtype = torch.float32 if is_mps else torch.float64
|
926 |
+
else:
|
927 |
+
dtype = torch.int32 if is_mps else torch.int64
|
928 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
929 |
+
elif len(timesteps.shape) == 0:
|
930 |
+
timesteps = timesteps[None].to(sample.device)
|
931 |
+
|
932 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
933 |
+
timesteps = timesteps.expand(sample.shape[0])
|
934 |
+
|
935 |
+
t_emb = self.time_proj(timesteps)
|
936 |
+
|
937 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
938 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
939 |
+
# there might be better ways to encapsulate this.
|
940 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
941 |
+
|
942 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
943 |
+
aug_emb = None
|
944 |
+
|
945 |
+
if self.class_embedding is not None:
|
946 |
+
if class_labels is None:
|
947 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
948 |
+
|
949 |
+
if self.config.class_embed_type == "timestep":
|
950 |
+
class_labels = self.time_proj(class_labels)
|
951 |
+
|
952 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
953 |
+
# there might be better ways to encapsulate this.
|
954 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
955 |
+
|
956 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
957 |
+
|
958 |
+
if self.config.class_embeddings_concat:
|
959 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
960 |
+
else:
|
961 |
+
emb = emb + class_emb
|
962 |
+
|
963 |
+
if self.config.addition_embed_type == "text":
|
964 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
965 |
+
elif self.config.addition_embed_type == "text_image":
|
966 |
+
# Kandinsky 2.1 - style
|
967 |
+
if "image_embeds" not in added_cond_kwargs:
|
968 |
+
raise ValueError(
|
969 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
970 |
+
)
|
971 |
+
|
972 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
973 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
974 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
975 |
+
elif self.config.addition_embed_type == "text_time":
|
976 |
+
# SDXL - style
|
977 |
+
if "text_embeds" not in added_cond_kwargs:
|
978 |
+
raise ValueError(
|
979 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
980 |
+
)
|
981 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
982 |
+
if "time_ids" not in added_cond_kwargs:
|
983 |
+
raise ValueError(
|
984 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
985 |
+
)
|
986 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
987 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
988 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
989 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
990 |
+
add_embeds = add_embeds.to(emb.dtype)
|
991 |
+
aug_emb = self.add_embedding(add_embeds)
|
992 |
+
elif self.config.addition_embed_type == "image":
|
993 |
+
# Kandinsky 2.2 - style
|
994 |
+
if "image_embeds" not in added_cond_kwargs:
|
995 |
+
raise ValueError(
|
996 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
997 |
+
)
|
998 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
999 |
+
aug_emb = self.add_embedding(image_embs)
|
1000 |
+
elif self.config.addition_embed_type == "image_hint":
|
1001 |
+
# Kandinsky 2.2 - style
|
1002 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1003 |
+
raise ValueError(
|
1004 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1005 |
+
)
|
1006 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1007 |
+
hint = added_cond_kwargs.get("hint")
|
1008 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1009 |
+
sample = torch.cat([sample, hint], dim=1)
|
1010 |
+
|
1011 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1012 |
+
|
1013 |
+
if self.time_embed_act is not None:
|
1014 |
+
emb = self.time_embed_act(emb)
|
1015 |
+
|
1016 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1017 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1018 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1019 |
+
# Kadinsky 2.1 - style
|
1020 |
+
if "image_embeds" not in added_cond_kwargs:
|
1021 |
+
raise ValueError(
|
1022 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1026 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1027 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1028 |
+
# Kandinsky 2.2 - style
|
1029 |
+
if "image_embeds" not in added_cond_kwargs:
|
1030 |
+
raise ValueError(
|
1031 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1032 |
+
)
|
1033 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1034 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1035 |
+
# 2. pre-process
|
1036 |
+
sample = self.conv_in(sample)
|
1037 |
+
|
1038 |
+
# 2.5 GLIGEN position net
|
1039 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1040 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1041 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1042 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1043 |
+
|
1044 |
+
# For Vton
|
1045 |
+
spatial_attn_inputs = []
|
1046 |
+
|
1047 |
+
# 3. down
|
1048 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1049 |
+
if USE_PEFT_BACKEND:
|
1050 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1051 |
+
scale_lora_layers(self, lora_scale)
|
1052 |
+
|
1053 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1054 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1055 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1056 |
+
# maintain backward compatibility for legacy usage, where
|
1057 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1058 |
+
# but can only use one or the other
|
1059 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1060 |
+
deprecate(
|
1061 |
+
"T2I should not use down_block_additional_residuals",
|
1062 |
+
"1.3.0",
|
1063 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1064 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1065 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1066 |
+
standard_warn=False,
|
1067 |
+
)
|
1068 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1069 |
+
is_adapter = True
|
1070 |
+
|
1071 |
+
down_block_res_samples = (sample,)
|
1072 |
+
for downsample_block in self.down_blocks:
|
1073 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1074 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1075 |
+
additional_residuals = {}
|
1076 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1077 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1078 |
+
|
1079 |
+
sample, res_samples, spatial_attn_inputs = downsample_block(
|
1080 |
+
hidden_states=sample,
|
1081 |
+
spatial_attn_inputs=spatial_attn_inputs,
|
1082 |
+
temb=emb,
|
1083 |
+
encoder_hidden_states=encoder_hidden_states,
|
1084 |
+
attention_mask=attention_mask,
|
1085 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1086 |
+
encoder_attention_mask=encoder_attention_mask,
|
1087 |
+
**additional_residuals,
|
1088 |
+
)
|
1089 |
+
else:
|
1090 |
+
sample, res_samples = downsample_block(
|
1091 |
+
hidden_states=sample,
|
1092 |
+
temb=emb,
|
1093 |
+
scale=lora_scale,
|
1094 |
+
)
|
1095 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1096 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1097 |
+
|
1098 |
+
down_block_res_samples += res_samples
|
1099 |
+
|
1100 |
+
# if is_controlnet:
|
1101 |
+
# new_down_block_res_samples = ()
|
1102 |
+
|
1103 |
+
# for down_block_res_sample, down_block_additional_residual in zip(
|
1104 |
+
# down_block_res_samples, down_block_additional_residuals
|
1105 |
+
# ):
|
1106 |
+
# down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1107 |
+
# new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1108 |
+
|
1109 |
+
# down_block_res_samples = new_down_block_res_samples
|
1110 |
+
|
1111 |
+
# 4. mid
|
1112 |
+
if self.mid_block is not None:
|
1113 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1114 |
+
sample, spatial_attn_inputs = self.mid_block(
|
1115 |
+
sample,
|
1116 |
+
spatial_attn_inputs=spatial_attn_inputs,
|
1117 |
+
temb=emb,
|
1118 |
+
encoder_hidden_states=encoder_hidden_states,
|
1119 |
+
attention_mask=attention_mask,
|
1120 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1121 |
+
encoder_attention_mask=encoder_attention_mask,
|
1122 |
+
)
|
1123 |
+
else:
|
1124 |
+
sample = self.mid_block(sample, emb)
|
1125 |
+
|
1126 |
+
# To support T2I-Adapter-XL
|
1127 |
+
if (
|
1128 |
+
is_adapter
|
1129 |
+
and len(down_intrablock_additional_residuals) > 0
|
1130 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1131 |
+
):
|
1132 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1133 |
+
|
1134 |
+
if is_controlnet:
|
1135 |
+
sample = sample + mid_block_additional_residual
|
1136 |
+
|
1137 |
+
# 5. up
|
1138 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1139 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1140 |
+
|
1141 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1142 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1143 |
+
|
1144 |
+
# if we have not reached the final block and need to forward the
|
1145 |
+
# upsample size, we do it here
|
1146 |
+
if not is_final_block and forward_upsample_size:
|
1147 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1148 |
+
|
1149 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1150 |
+
sample, spatial_attn_inputs = upsample_block(
|
1151 |
+
hidden_states=sample,
|
1152 |
+
spatial_attn_inputs=spatial_attn_inputs,
|
1153 |
+
temb=emb,
|
1154 |
+
res_hidden_states_tuple=res_samples,
|
1155 |
+
encoder_hidden_states=encoder_hidden_states,
|
1156 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1157 |
+
upsample_size=upsample_size,
|
1158 |
+
attention_mask=attention_mask,
|
1159 |
+
encoder_attention_mask=encoder_attention_mask,
|
1160 |
+
)
|
1161 |
+
else:
|
1162 |
+
sample = upsample_block(
|
1163 |
+
hidden_states=sample,
|
1164 |
+
temb=emb,
|
1165 |
+
res_hidden_states_tuple=res_samples,
|
1166 |
+
upsample_size=upsample_size,
|
1167 |
+
scale=lora_scale,
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
# 6. post-process
|
1171 |
+
if self.conv_norm_out:
|
1172 |
+
sample = self.conv_norm_out(sample)
|
1173 |
+
sample = self.conv_act(sample)
|
1174 |
+
sample = self.conv_out(sample)
|
1175 |
+
|
1176 |
+
if USE_PEFT_BACKEND:
|
1177 |
+
# remove `lora_scale` from each PEFT layer
|
1178 |
+
unscale_lora_layers(self, lora_scale)
|
1179 |
+
|
1180 |
+
if not return_dict:
|
1181 |
+
return (sample,), spatial_attn_inputs
|
1182 |
+
|
1183 |
+
return UNet2DConditionOutput(sample=sample), spatial_attn_inputs
|
ootd/pipelines_ootd/unet_vton_2d_blocks.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ootd/pipelines_ootd/unet_vton_2d_condition.py
ADDED
@@ -0,0 +1,1183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modified by Yuhao Xu for OOTDiffusion (https://github.com/levihsu/OOTDiffusion)
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
|
23 |
+
from .unet_vton_2d_blocks import (
|
24 |
+
UNetMidBlock2D,
|
25 |
+
UNetMidBlock2DCrossAttn,
|
26 |
+
UNetMidBlock2DSimpleCrossAttn,
|
27 |
+
get_down_block,
|
28 |
+
get_up_block,
|
29 |
+
)
|
30 |
+
|
31 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
32 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
33 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
34 |
+
from diffusers.models.activations import get_activation
|
35 |
+
from diffusers.models.attention_processor import (
|
36 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
37 |
+
CROSS_ATTENTION_PROCESSORS,
|
38 |
+
AttentionProcessor,
|
39 |
+
AttnAddedKVProcessor,
|
40 |
+
AttnProcessor,
|
41 |
+
)
|
42 |
+
from diffusers.models.embeddings import (
|
43 |
+
GaussianFourierProjection,
|
44 |
+
ImageHintTimeEmbedding,
|
45 |
+
ImageProjection,
|
46 |
+
ImageTimeEmbedding,
|
47 |
+
PositionNet,
|
48 |
+
TextImageProjection,
|
49 |
+
TextImageTimeEmbedding,
|
50 |
+
TextTimeEmbedding,
|
51 |
+
TimestepEmbedding,
|
52 |
+
Timesteps,
|
53 |
+
)
|
54 |
+
from diffusers.models.modeling_utils import ModelMixin
|
55 |
+
# from ..diffusers.src.diffusers.models.unet_2d_blocks import (
|
56 |
+
# UNetMidBlock2D,
|
57 |
+
# UNetMidBlock2DCrossAttn,
|
58 |
+
# UNetMidBlock2DSimpleCrossAttn,
|
59 |
+
# get_down_block,
|
60 |
+
# get_up_block,
|
61 |
+
# )
|
62 |
+
|
63 |
+
|
64 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
65 |
+
|
66 |
+
|
67 |
+
@dataclass
|
68 |
+
class UNet2DConditionOutput(BaseOutput):
|
69 |
+
"""
|
70 |
+
The output of [`UNet2DConditionModel`].
|
71 |
+
|
72 |
+
Args:
|
73 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
74 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
75 |
+
"""
|
76 |
+
|
77 |
+
sample: torch.FloatTensor = None
|
78 |
+
|
79 |
+
|
80 |
+
class UNetVton2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
81 |
+
r"""
|
82 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
83 |
+
shaped output.
|
84 |
+
|
85 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
86 |
+
for all models (such as downloading or saving).
|
87 |
+
|
88 |
+
Parameters:
|
89 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
90 |
+
Height and width of input/output sample.
|
91 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
92 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
93 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
94 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
95 |
+
Whether to flip the sin to cos in the time embedding.
|
96 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
97 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
98 |
+
The tuple of downsample blocks to use.
|
99 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
100 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
101 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
102 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
103 |
+
The tuple of upsample blocks to use.
|
104 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
105 |
+
Whether to include self-attention in the basic transformer blocks, see
|
106 |
+
[`~models.attention.BasicTransformerBlock`].
|
107 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
108 |
+
The tuple of output channels for each block.
|
109 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
110 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
111 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
112 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
113 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
114 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
115 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
116 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
117 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
118 |
+
The dimension of the cross attention features.
|
119 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
120 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
121 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
122 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
123 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
124 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
125 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
126 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
127 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
128 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
129 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
130 |
+
dimension to `cross_attention_dim`.
|
131 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
132 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
133 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
134 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
135 |
+
num_attention_heads (`int`, *optional*):
|
136 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
137 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
138 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
139 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
140 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
141 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
142 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
143 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
144 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
145 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
146 |
+
Dimension for the timestep embeddings.
|
147 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
148 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
149 |
+
class conditioning with `class_embed_type` equal to `None`.
|
150 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
151 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
152 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
153 |
+
An optional override for the dimension of the projected time embedding.
|
154 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
155 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
156 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
157 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
158 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
159 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
160 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
161 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
162 |
+
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
163 |
+
*optional*): The dimension of the `class_labels` input when
|
164 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
165 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
166 |
+
embeddings with the class embeddings.
|
167 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
168 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
169 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
170 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
171 |
+
otherwise.
|
172 |
+
"""
|
173 |
+
|
174 |
+
_supports_gradient_checkpointing = True
|
175 |
+
|
176 |
+
@register_to_config
|
177 |
+
def __init__(
|
178 |
+
self,
|
179 |
+
sample_size: Optional[int] = None,
|
180 |
+
in_channels: int = 4,
|
181 |
+
out_channels: int = 4,
|
182 |
+
center_input_sample: bool = False,
|
183 |
+
flip_sin_to_cos: bool = True,
|
184 |
+
freq_shift: int = 0,
|
185 |
+
down_block_types: Tuple[str] = (
|
186 |
+
"CrossAttnDownBlock2D",
|
187 |
+
"CrossAttnDownBlock2D",
|
188 |
+
"CrossAttnDownBlock2D",
|
189 |
+
"DownBlock2D",
|
190 |
+
),
|
191 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
192 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
193 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
194 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
195 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
196 |
+
downsample_padding: int = 1,
|
197 |
+
mid_block_scale_factor: float = 1,
|
198 |
+
dropout: float = 0.0,
|
199 |
+
act_fn: str = "silu",
|
200 |
+
norm_num_groups: Optional[int] = 32,
|
201 |
+
norm_eps: float = 1e-5,
|
202 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
203 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
204 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
205 |
+
encoder_hid_dim: Optional[int] = None,
|
206 |
+
encoder_hid_dim_type: Optional[str] = None,
|
207 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
208 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
209 |
+
dual_cross_attention: bool = False,
|
210 |
+
use_linear_projection: bool = False,
|
211 |
+
class_embed_type: Optional[str] = None,
|
212 |
+
addition_embed_type: Optional[str] = None,
|
213 |
+
addition_time_embed_dim: Optional[int] = None,
|
214 |
+
num_class_embeds: Optional[int] = None,
|
215 |
+
upcast_attention: bool = False,
|
216 |
+
resnet_time_scale_shift: str = "default",
|
217 |
+
resnet_skip_time_act: bool = False,
|
218 |
+
resnet_out_scale_factor: int = 1.0,
|
219 |
+
time_embedding_type: str = "positional",
|
220 |
+
time_embedding_dim: Optional[int] = None,
|
221 |
+
time_embedding_act_fn: Optional[str] = None,
|
222 |
+
timestep_post_act: Optional[str] = None,
|
223 |
+
time_cond_proj_dim: Optional[int] = None,
|
224 |
+
conv_in_kernel: int = 3,
|
225 |
+
conv_out_kernel: int = 3,
|
226 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
227 |
+
attention_type: str = "default",
|
228 |
+
class_embeddings_concat: bool = False,
|
229 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
230 |
+
cross_attention_norm: Optional[str] = None,
|
231 |
+
addition_embed_type_num_heads=64,
|
232 |
+
):
|
233 |
+
super().__init__()
|
234 |
+
|
235 |
+
self.sample_size = sample_size
|
236 |
+
|
237 |
+
if num_attention_heads is not None:
|
238 |
+
raise ValueError(
|
239 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
240 |
+
)
|
241 |
+
|
242 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
243 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
244 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
245 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
246 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
247 |
+
# which is why we correct for the naming here.
|
248 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
249 |
+
|
250 |
+
# Check inputs
|
251 |
+
if len(down_block_types) != len(up_block_types):
|
252 |
+
raise ValueError(
|
253 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
254 |
+
)
|
255 |
+
|
256 |
+
if len(block_out_channels) != len(down_block_types):
|
257 |
+
raise ValueError(
|
258 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
259 |
+
)
|
260 |
+
|
261 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
262 |
+
raise ValueError(
|
263 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
264 |
+
)
|
265 |
+
|
266 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
267 |
+
raise ValueError(
|
268 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
269 |
+
)
|
270 |
+
|
271 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
272 |
+
raise ValueError(
|
273 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
274 |
+
)
|
275 |
+
|
276 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
277 |
+
raise ValueError(
|
278 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
279 |
+
)
|
280 |
+
|
281 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
282 |
+
raise ValueError(
|
283 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
284 |
+
)
|
285 |
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
286 |
+
for layer_number_per_block in transformer_layers_per_block:
|
287 |
+
if isinstance(layer_number_per_block, list):
|
288 |
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
289 |
+
|
290 |
+
# input
|
291 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
292 |
+
self.conv_in = nn.Conv2d(
|
293 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
294 |
+
)
|
295 |
+
|
296 |
+
# time
|
297 |
+
if time_embedding_type == "fourier":
|
298 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
299 |
+
if time_embed_dim % 2 != 0:
|
300 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
301 |
+
self.time_proj = GaussianFourierProjection(
|
302 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
303 |
+
)
|
304 |
+
timestep_input_dim = time_embed_dim
|
305 |
+
elif time_embedding_type == "positional":
|
306 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
307 |
+
|
308 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
309 |
+
timestep_input_dim = block_out_channels[0]
|
310 |
+
else:
|
311 |
+
raise ValueError(
|
312 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
313 |
+
)
|
314 |
+
|
315 |
+
self.time_embedding = TimestepEmbedding(
|
316 |
+
timestep_input_dim,
|
317 |
+
time_embed_dim,
|
318 |
+
act_fn=act_fn,
|
319 |
+
post_act_fn=timestep_post_act,
|
320 |
+
cond_proj_dim=time_cond_proj_dim,
|
321 |
+
)
|
322 |
+
|
323 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
324 |
+
encoder_hid_dim_type = "text_proj"
|
325 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
326 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
327 |
+
|
328 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
329 |
+
raise ValueError(
|
330 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
331 |
+
)
|
332 |
+
|
333 |
+
if encoder_hid_dim_type == "text_proj":
|
334 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
335 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
336 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
337 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
338 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
339 |
+
self.encoder_hid_proj = TextImageProjection(
|
340 |
+
text_embed_dim=encoder_hid_dim,
|
341 |
+
image_embed_dim=cross_attention_dim,
|
342 |
+
cross_attention_dim=cross_attention_dim,
|
343 |
+
)
|
344 |
+
elif encoder_hid_dim_type == "image_proj":
|
345 |
+
# Kandinsky 2.2
|
346 |
+
self.encoder_hid_proj = ImageProjection(
|
347 |
+
image_embed_dim=encoder_hid_dim,
|
348 |
+
cross_attention_dim=cross_attention_dim,
|
349 |
+
)
|
350 |
+
elif encoder_hid_dim_type is not None:
|
351 |
+
raise ValueError(
|
352 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
353 |
+
)
|
354 |
+
else:
|
355 |
+
self.encoder_hid_proj = None
|
356 |
+
|
357 |
+
# class embedding
|
358 |
+
if class_embed_type is None and num_class_embeds is not None:
|
359 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
360 |
+
elif class_embed_type == "timestep":
|
361 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
362 |
+
elif class_embed_type == "identity":
|
363 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
364 |
+
elif class_embed_type == "projection":
|
365 |
+
if projection_class_embeddings_input_dim is None:
|
366 |
+
raise ValueError(
|
367 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
368 |
+
)
|
369 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
370 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
371 |
+
# 2. it projects from an arbitrary input dimension.
|
372 |
+
#
|
373 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
374 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
375 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
376 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
377 |
+
elif class_embed_type == "simple_projection":
|
378 |
+
if projection_class_embeddings_input_dim is None:
|
379 |
+
raise ValueError(
|
380 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
381 |
+
)
|
382 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
383 |
+
else:
|
384 |
+
self.class_embedding = None
|
385 |
+
|
386 |
+
if addition_embed_type == "text":
|
387 |
+
if encoder_hid_dim is not None:
|
388 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
389 |
+
else:
|
390 |
+
text_time_embedding_from_dim = cross_attention_dim
|
391 |
+
|
392 |
+
self.add_embedding = TextTimeEmbedding(
|
393 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
394 |
+
)
|
395 |
+
elif addition_embed_type == "text_image":
|
396 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
397 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
398 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
399 |
+
self.add_embedding = TextImageTimeEmbedding(
|
400 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
401 |
+
)
|
402 |
+
elif addition_embed_type == "text_time":
|
403 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
404 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
405 |
+
elif addition_embed_type == "image":
|
406 |
+
# Kandinsky 2.2
|
407 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
408 |
+
elif addition_embed_type == "image_hint":
|
409 |
+
# Kandinsky 2.2 ControlNet
|
410 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
411 |
+
elif addition_embed_type is not None:
|
412 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
413 |
+
|
414 |
+
if time_embedding_act_fn is None:
|
415 |
+
self.time_embed_act = None
|
416 |
+
else:
|
417 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
418 |
+
|
419 |
+
self.down_blocks = nn.ModuleList([])
|
420 |
+
self.up_blocks = nn.ModuleList([])
|
421 |
+
|
422 |
+
if isinstance(only_cross_attention, bool):
|
423 |
+
if mid_block_only_cross_attention is None:
|
424 |
+
mid_block_only_cross_attention = only_cross_attention
|
425 |
+
|
426 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
427 |
+
|
428 |
+
if mid_block_only_cross_attention is None:
|
429 |
+
mid_block_only_cross_attention = False
|
430 |
+
|
431 |
+
if isinstance(num_attention_heads, int):
|
432 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
433 |
+
|
434 |
+
if isinstance(attention_head_dim, int):
|
435 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
436 |
+
|
437 |
+
if isinstance(cross_attention_dim, int):
|
438 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
439 |
+
|
440 |
+
if isinstance(layers_per_block, int):
|
441 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
442 |
+
|
443 |
+
if isinstance(transformer_layers_per_block, int):
|
444 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
445 |
+
|
446 |
+
if class_embeddings_concat:
|
447 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
448 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
449 |
+
# regular time embeddings
|
450 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
451 |
+
else:
|
452 |
+
blocks_time_embed_dim = time_embed_dim
|
453 |
+
|
454 |
+
# down
|
455 |
+
output_channel = block_out_channels[0]
|
456 |
+
for i, down_block_type in enumerate(down_block_types):
|
457 |
+
input_channel = output_channel
|
458 |
+
output_channel = block_out_channels[i]
|
459 |
+
is_final_block = i == len(block_out_channels) - 1
|
460 |
+
|
461 |
+
down_block = get_down_block(
|
462 |
+
down_block_type,
|
463 |
+
num_layers=layers_per_block[i],
|
464 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
465 |
+
in_channels=input_channel,
|
466 |
+
out_channels=output_channel,
|
467 |
+
temb_channels=blocks_time_embed_dim,
|
468 |
+
add_downsample=not is_final_block,
|
469 |
+
resnet_eps=norm_eps,
|
470 |
+
resnet_act_fn=act_fn,
|
471 |
+
resnet_groups=norm_num_groups,
|
472 |
+
cross_attention_dim=cross_attention_dim[i],
|
473 |
+
num_attention_heads=num_attention_heads[i],
|
474 |
+
downsample_padding=downsample_padding,
|
475 |
+
dual_cross_attention=dual_cross_attention,
|
476 |
+
use_linear_projection=use_linear_projection,
|
477 |
+
only_cross_attention=only_cross_attention[i],
|
478 |
+
upcast_attention=upcast_attention,
|
479 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
480 |
+
attention_type=attention_type,
|
481 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
482 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
483 |
+
cross_attention_norm=cross_attention_norm,
|
484 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
485 |
+
dropout=dropout,
|
486 |
+
)
|
487 |
+
self.down_blocks.append(down_block)
|
488 |
+
|
489 |
+
# mid
|
490 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
491 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
492 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
493 |
+
in_channels=block_out_channels[-1],
|
494 |
+
temb_channels=blocks_time_embed_dim,
|
495 |
+
dropout=dropout,
|
496 |
+
resnet_eps=norm_eps,
|
497 |
+
resnet_act_fn=act_fn,
|
498 |
+
output_scale_factor=mid_block_scale_factor,
|
499 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
500 |
+
cross_attention_dim=cross_attention_dim[-1],
|
501 |
+
num_attention_heads=num_attention_heads[-1],
|
502 |
+
resnet_groups=norm_num_groups,
|
503 |
+
dual_cross_attention=dual_cross_attention,
|
504 |
+
use_linear_projection=use_linear_projection,
|
505 |
+
upcast_attention=upcast_attention,
|
506 |
+
attention_type=attention_type,
|
507 |
+
)
|
508 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
509 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
510 |
+
in_channels=block_out_channels[-1],
|
511 |
+
temb_channels=blocks_time_embed_dim,
|
512 |
+
dropout=dropout,
|
513 |
+
resnet_eps=norm_eps,
|
514 |
+
resnet_act_fn=act_fn,
|
515 |
+
output_scale_factor=mid_block_scale_factor,
|
516 |
+
cross_attention_dim=cross_attention_dim[-1],
|
517 |
+
attention_head_dim=attention_head_dim[-1],
|
518 |
+
resnet_groups=norm_num_groups,
|
519 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
520 |
+
skip_time_act=resnet_skip_time_act,
|
521 |
+
only_cross_attention=mid_block_only_cross_attention,
|
522 |
+
cross_attention_norm=cross_attention_norm,
|
523 |
+
)
|
524 |
+
elif mid_block_type == "UNetMidBlock2D":
|
525 |
+
self.mid_block = UNetMidBlock2D(
|
526 |
+
in_channels=block_out_channels[-1],
|
527 |
+
temb_channels=blocks_time_embed_dim,
|
528 |
+
dropout=dropout,
|
529 |
+
num_layers=0,
|
530 |
+
resnet_eps=norm_eps,
|
531 |
+
resnet_act_fn=act_fn,
|
532 |
+
output_scale_factor=mid_block_scale_factor,
|
533 |
+
resnet_groups=norm_num_groups,
|
534 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
535 |
+
add_attention=False,
|
536 |
+
)
|
537 |
+
elif mid_block_type is None:
|
538 |
+
self.mid_block = None
|
539 |
+
else:
|
540 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
541 |
+
|
542 |
+
# count how many layers upsample the images
|
543 |
+
self.num_upsamplers = 0
|
544 |
+
|
545 |
+
# up
|
546 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
547 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
548 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
549 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
550 |
+
reversed_transformer_layers_per_block = (
|
551 |
+
list(reversed(transformer_layers_per_block))
|
552 |
+
if reverse_transformer_layers_per_block is None
|
553 |
+
else reverse_transformer_layers_per_block
|
554 |
+
)
|
555 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
556 |
+
|
557 |
+
output_channel = reversed_block_out_channels[0]
|
558 |
+
for i, up_block_type in enumerate(up_block_types):
|
559 |
+
is_final_block = i == len(block_out_channels) - 1
|
560 |
+
|
561 |
+
prev_output_channel = output_channel
|
562 |
+
output_channel = reversed_block_out_channels[i]
|
563 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
564 |
+
|
565 |
+
# add upsample block for all BUT final layer
|
566 |
+
if not is_final_block:
|
567 |
+
add_upsample = True
|
568 |
+
self.num_upsamplers += 1
|
569 |
+
else:
|
570 |
+
add_upsample = False
|
571 |
+
|
572 |
+
up_block = get_up_block(
|
573 |
+
up_block_type,
|
574 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
575 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
576 |
+
in_channels=input_channel,
|
577 |
+
out_channels=output_channel,
|
578 |
+
prev_output_channel=prev_output_channel,
|
579 |
+
temb_channels=blocks_time_embed_dim,
|
580 |
+
add_upsample=add_upsample,
|
581 |
+
resnet_eps=norm_eps,
|
582 |
+
resnet_act_fn=act_fn,
|
583 |
+
resolution_idx=i,
|
584 |
+
resnet_groups=norm_num_groups,
|
585 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
586 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
587 |
+
dual_cross_attention=dual_cross_attention,
|
588 |
+
use_linear_projection=use_linear_projection,
|
589 |
+
only_cross_attention=only_cross_attention[i],
|
590 |
+
upcast_attention=upcast_attention,
|
591 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
592 |
+
attention_type=attention_type,
|
593 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
594 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
595 |
+
cross_attention_norm=cross_attention_norm,
|
596 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
597 |
+
dropout=dropout,
|
598 |
+
)
|
599 |
+
self.up_blocks.append(up_block)
|
600 |
+
prev_output_channel = output_channel
|
601 |
+
|
602 |
+
# out
|
603 |
+
if norm_num_groups is not None:
|
604 |
+
self.conv_norm_out = nn.GroupNorm(
|
605 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
606 |
+
)
|
607 |
+
|
608 |
+
self.conv_act = get_activation(act_fn)
|
609 |
+
|
610 |
+
else:
|
611 |
+
self.conv_norm_out = None
|
612 |
+
self.conv_act = None
|
613 |
+
|
614 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
615 |
+
self.conv_out = nn.Conv2d(
|
616 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
617 |
+
)
|
618 |
+
|
619 |
+
if attention_type in ["gated", "gated-text-image"]:
|
620 |
+
positive_len = 768
|
621 |
+
if isinstance(cross_attention_dim, int):
|
622 |
+
positive_len = cross_attention_dim
|
623 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
624 |
+
positive_len = cross_attention_dim[0]
|
625 |
+
|
626 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
627 |
+
self.position_net = PositionNet(
|
628 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
629 |
+
)
|
630 |
+
|
631 |
+
@property
|
632 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
633 |
+
r"""
|
634 |
+
Returns:
|
635 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
636 |
+
indexed by its weight name.
|
637 |
+
"""
|
638 |
+
# set recursively
|
639 |
+
processors = {}
|
640 |
+
|
641 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
642 |
+
if hasattr(module, "get_processor"):
|
643 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
644 |
+
|
645 |
+
for sub_name, child in module.named_children():
|
646 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
647 |
+
|
648 |
+
return processors
|
649 |
+
|
650 |
+
for name, module in self.named_children():
|
651 |
+
fn_recursive_add_processors(name, module, processors)
|
652 |
+
|
653 |
+
return processors
|
654 |
+
|
655 |
+
def set_attn_processor(
|
656 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
657 |
+
):
|
658 |
+
r"""
|
659 |
+
Sets the attention processor to use to compute attention.
|
660 |
+
|
661 |
+
Parameters:
|
662 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
663 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
664 |
+
for **all** `Attention` layers.
|
665 |
+
|
666 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
667 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
668 |
+
|
669 |
+
"""
|
670 |
+
count = len(self.attn_processors.keys())
|
671 |
+
|
672 |
+
if isinstance(processor, dict) and len(processor) != count:
|
673 |
+
raise ValueError(
|
674 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
675 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
676 |
+
)
|
677 |
+
|
678 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
679 |
+
if hasattr(module, "set_processor"):
|
680 |
+
if not isinstance(processor, dict):
|
681 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
682 |
+
else:
|
683 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
684 |
+
|
685 |
+
for sub_name, child in module.named_children():
|
686 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
687 |
+
|
688 |
+
for name, module in self.named_children():
|
689 |
+
fn_recursive_attn_processor(name, module, processor)
|
690 |
+
|
691 |
+
def set_default_attn_processor(self):
|
692 |
+
"""
|
693 |
+
Disables custom attention processors and sets the default attention implementation.
|
694 |
+
"""
|
695 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
696 |
+
processor = AttnAddedKVProcessor()
|
697 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
698 |
+
processor = AttnProcessor()
|
699 |
+
else:
|
700 |
+
raise ValueError(
|
701 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
702 |
+
)
|
703 |
+
|
704 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
705 |
+
|
706 |
+
def set_attention_slice(self, slice_size):
|
707 |
+
r"""
|
708 |
+
Enable sliced attention computation.
|
709 |
+
|
710 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
711 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
712 |
+
|
713 |
+
Args:
|
714 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
715 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
716 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
717 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
718 |
+
must be a multiple of `slice_size`.
|
719 |
+
"""
|
720 |
+
sliceable_head_dims = []
|
721 |
+
|
722 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
723 |
+
if hasattr(module, "set_attention_slice"):
|
724 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
725 |
+
|
726 |
+
for child in module.children():
|
727 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
728 |
+
|
729 |
+
# retrieve number of attention layers
|
730 |
+
for module in self.children():
|
731 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
732 |
+
|
733 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
734 |
+
|
735 |
+
if slice_size == "auto":
|
736 |
+
# half the attention head size is usually a good trade-off between
|
737 |
+
# speed and memory
|
738 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
739 |
+
elif slice_size == "max":
|
740 |
+
# make smallest slice possible
|
741 |
+
slice_size = num_sliceable_layers * [1]
|
742 |
+
|
743 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
744 |
+
|
745 |
+
if len(slice_size) != len(sliceable_head_dims):
|
746 |
+
raise ValueError(
|
747 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
748 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
749 |
+
)
|
750 |
+
|
751 |
+
for i in range(len(slice_size)):
|
752 |
+
size = slice_size[i]
|
753 |
+
dim = sliceable_head_dims[i]
|
754 |
+
if size is not None and size > dim:
|
755 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
756 |
+
|
757 |
+
# Recursively walk through all the children.
|
758 |
+
# Any children which exposes the set_attention_slice method
|
759 |
+
# gets the message
|
760 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
761 |
+
if hasattr(module, "set_attention_slice"):
|
762 |
+
module.set_attention_slice(slice_size.pop())
|
763 |
+
|
764 |
+
for child in module.children():
|
765 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
766 |
+
|
767 |
+
reversed_slice_size = list(reversed(slice_size))
|
768 |
+
for module in self.children():
|
769 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
770 |
+
|
771 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
772 |
+
if hasattr(module, "gradient_checkpointing"):
|
773 |
+
module.gradient_checkpointing = value
|
774 |
+
|
775 |
+
def enable_freeu(self, s1, s2, b1, b2):
|
776 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
777 |
+
|
778 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
779 |
+
|
780 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
781 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
782 |
+
|
783 |
+
Args:
|
784 |
+
s1 (`float`):
|
785 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
786 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
787 |
+
s2 (`float`):
|
788 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
789 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
790 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
791 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
792 |
+
"""
|
793 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
794 |
+
setattr(upsample_block, "s1", s1)
|
795 |
+
setattr(upsample_block, "s2", s2)
|
796 |
+
setattr(upsample_block, "b1", b1)
|
797 |
+
setattr(upsample_block, "b2", b2)
|
798 |
+
|
799 |
+
def disable_freeu(self):
|
800 |
+
"""Disables the FreeU mechanism."""
|
801 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
802 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
803 |
+
for k in freeu_keys:
|
804 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
805 |
+
setattr(upsample_block, k, None)
|
806 |
+
|
807 |
+
def forward(
|
808 |
+
self,
|
809 |
+
sample: torch.FloatTensor,
|
810 |
+
spatial_attn_inputs,
|
811 |
+
timestep: Union[torch.Tensor, float, int],
|
812 |
+
encoder_hidden_states: torch.Tensor,
|
813 |
+
class_labels: Optional[torch.Tensor] = None,
|
814 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
815 |
+
attention_mask: Optional[torch.Tensor] = None,
|
816 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
817 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
818 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
819 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
820 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
821 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
822 |
+
return_dict: bool = True,
|
823 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
824 |
+
r"""
|
825 |
+
The [`UNet2DConditionModel`] forward method.
|
826 |
+
|
827 |
+
Args:
|
828 |
+
sample (`torch.FloatTensor`):
|
829 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
830 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
831 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
832 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
833 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
834 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
835 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
836 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
837 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
838 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
839 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
840 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
841 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
842 |
+
cross_attention_kwargs (`dict`, *optional*):
|
843 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
844 |
+
`self.processor` in
|
845 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
846 |
+
added_cond_kwargs: (`dict`, *optional*):
|
847 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
848 |
+
are passed along to the UNet blocks.
|
849 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
850 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
851 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
852 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
853 |
+
encoder_attention_mask (`torch.Tensor`):
|
854 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
855 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
856 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
857 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
858 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
859 |
+
tuple.
|
860 |
+
cross_attention_kwargs (`dict`, *optional*):
|
861 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
862 |
+
added_cond_kwargs: (`dict`, *optional*):
|
863 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
864 |
+
are passed along to the UNet blocks.
|
865 |
+
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
866 |
+
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
867 |
+
example from ControlNet side model(s)
|
868 |
+
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
869 |
+
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
870 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
871 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
872 |
+
|
873 |
+
Returns:
|
874 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
875 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
876 |
+
a `tuple` is returned where the first element is the sample tensor.
|
877 |
+
"""
|
878 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
879 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
880 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
881 |
+
# on the fly if necessary.
|
882 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
883 |
+
|
884 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
885 |
+
forward_upsample_size = False
|
886 |
+
upsample_size = None
|
887 |
+
|
888 |
+
for dim in sample.shape[-2:]:
|
889 |
+
if dim % default_overall_up_factor != 0:
|
890 |
+
# Forward upsample size to force interpolation output size.
|
891 |
+
forward_upsample_size = True
|
892 |
+
break
|
893 |
+
|
894 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
895 |
+
# expects mask of shape:
|
896 |
+
# [batch, key_tokens]
|
897 |
+
# adds singleton query_tokens dimension:
|
898 |
+
# [batch, 1, key_tokens]
|
899 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
900 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
901 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
902 |
+
if attention_mask is not None:
|
903 |
+
# assume that mask is expressed as:
|
904 |
+
# (1 = keep, 0 = discard)
|
905 |
+
# convert mask into a bias that can be added to attention scores:
|
906 |
+
# (keep = +0, discard = -10000.0)
|
907 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
908 |
+
attention_mask = attention_mask.unsqueeze(1)
|
909 |
+
|
910 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
911 |
+
if encoder_attention_mask is not None:
|
912 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
913 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
914 |
+
|
915 |
+
# 0. center input if necessary
|
916 |
+
if self.config.center_input_sample:
|
917 |
+
sample = 2 * sample - 1.0
|
918 |
+
|
919 |
+
# 1. time
|
920 |
+
timesteps = timestep
|
921 |
+
if not torch.is_tensor(timesteps):
|
922 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
923 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
924 |
+
is_mps = sample.device.type == "mps"
|
925 |
+
if isinstance(timestep, float):
|
926 |
+
dtype = torch.float32 if is_mps else torch.float64
|
927 |
+
else:
|
928 |
+
dtype = torch.int32 if is_mps else torch.int64
|
929 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
930 |
+
elif len(timesteps.shape) == 0:
|
931 |
+
timesteps = timesteps[None].to(sample.device)
|
932 |
+
|
933 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
934 |
+
timesteps = timesteps.expand(sample.shape[0])
|
935 |
+
|
936 |
+
t_emb = self.time_proj(timesteps)
|
937 |
+
|
938 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
939 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
940 |
+
# there might be better ways to encapsulate this.
|
941 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
942 |
+
|
943 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
944 |
+
aug_emb = None
|
945 |
+
|
946 |
+
if self.class_embedding is not None:
|
947 |
+
if class_labels is None:
|
948 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
949 |
+
|
950 |
+
if self.config.class_embed_type == "timestep":
|
951 |
+
class_labels = self.time_proj(class_labels)
|
952 |
+
|
953 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
954 |
+
# there might be better ways to encapsulate this.
|
955 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
956 |
+
|
957 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
958 |
+
|
959 |
+
if self.config.class_embeddings_concat:
|
960 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
961 |
+
else:
|
962 |
+
emb = emb + class_emb
|
963 |
+
|
964 |
+
if self.config.addition_embed_type == "text":
|
965 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
966 |
+
elif self.config.addition_embed_type == "text_image":
|
967 |
+
# Kandinsky 2.1 - style
|
968 |
+
if "image_embeds" not in added_cond_kwargs:
|
969 |
+
raise ValueError(
|
970 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
971 |
+
)
|
972 |
+
|
973 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
974 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
975 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
976 |
+
elif self.config.addition_embed_type == "text_time":
|
977 |
+
# SDXL - style
|
978 |
+
if "text_embeds" not in added_cond_kwargs:
|
979 |
+
raise ValueError(
|
980 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
981 |
+
)
|
982 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
983 |
+
if "time_ids" not in added_cond_kwargs:
|
984 |
+
raise ValueError(
|
985 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
986 |
+
)
|
987 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
988 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
989 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
990 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
991 |
+
add_embeds = add_embeds.to(emb.dtype)
|
992 |
+
aug_emb = self.add_embedding(add_embeds)
|
993 |
+
elif self.config.addition_embed_type == "image":
|
994 |
+
# Kandinsky 2.2 - style
|
995 |
+
if "image_embeds" not in added_cond_kwargs:
|
996 |
+
raise ValueError(
|
997 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
998 |
+
)
|
999 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1000 |
+
aug_emb = self.add_embedding(image_embs)
|
1001 |
+
elif self.config.addition_embed_type == "image_hint":
|
1002 |
+
# Kandinsky 2.2 - style
|
1003 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1004 |
+
raise ValueError(
|
1005 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1006 |
+
)
|
1007 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1008 |
+
hint = added_cond_kwargs.get("hint")
|
1009 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1010 |
+
sample = torch.cat([sample, hint], dim=1)
|
1011 |
+
|
1012 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1013 |
+
|
1014 |
+
if self.time_embed_act is not None:
|
1015 |
+
emb = self.time_embed_act(emb)
|
1016 |
+
|
1017 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1018 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1019 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1020 |
+
# Kadinsky 2.1 - style
|
1021 |
+
if "image_embeds" not in added_cond_kwargs:
|
1022 |
+
raise ValueError(
|
1023 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1024 |
+
)
|
1025 |
+
|
1026 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1027 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1028 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1029 |
+
# Kandinsky 2.2 - style
|
1030 |
+
if "image_embeds" not in added_cond_kwargs:
|
1031 |
+
raise ValueError(
|
1032 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1033 |
+
)
|
1034 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1035 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1036 |
+
# 2. pre-process
|
1037 |
+
sample = self.conv_in(sample)
|
1038 |
+
|
1039 |
+
# 2.5 GLIGEN position net
|
1040 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1041 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1042 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1043 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1044 |
+
|
1045 |
+
# for spatial attention
|
1046 |
+
spatial_attn_idx = 0
|
1047 |
+
|
1048 |
+
# 3. down
|
1049 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
1050 |
+
if USE_PEFT_BACKEND:
|
1051 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1052 |
+
scale_lora_layers(self, lora_scale)
|
1053 |
+
|
1054 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1055 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1056 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1057 |
+
# maintain backward compatibility for legacy usage, where
|
1058 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1059 |
+
# but can only use one or the other
|
1060 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1061 |
+
deprecate(
|
1062 |
+
"T2I should not use down_block_additional_residuals",
|
1063 |
+
"1.3.0",
|
1064 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1065 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1066 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1067 |
+
standard_warn=False,
|
1068 |
+
)
|
1069 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1070 |
+
is_adapter = True
|
1071 |
+
|
1072 |
+
down_block_res_samples = (sample,)
|
1073 |
+
for downsample_block in self.down_blocks:
|
1074 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1075 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1076 |
+
additional_residuals = {}
|
1077 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1078 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1079 |
+
|
1080 |
+
sample, res_samples, spatial_attn_inputs, spatial_attn_idx = downsample_block(
|
1081 |
+
hidden_states=sample,
|
1082 |
+
spatial_attn_inputs=spatial_attn_inputs,
|
1083 |
+
spatial_attn_idx=spatial_attn_idx,
|
1084 |
+
temb=emb,
|
1085 |
+
encoder_hidden_states=encoder_hidden_states,
|
1086 |
+
attention_mask=attention_mask,
|
1087 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1088 |
+
encoder_attention_mask=encoder_attention_mask,
|
1089 |
+
**additional_residuals,
|
1090 |
+
)
|
1091 |
+
else:
|
1092 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
|
1093 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1094 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1095 |
+
|
1096 |
+
down_block_res_samples += res_samples
|
1097 |
+
|
1098 |
+
if is_controlnet:
|
1099 |
+
new_down_block_res_samples = ()
|
1100 |
+
|
1101 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1102 |
+
down_block_res_samples, down_block_additional_residuals
|
1103 |
+
):
|
1104 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1105 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1106 |
+
|
1107 |
+
down_block_res_samples = new_down_block_res_samples
|
1108 |
+
|
1109 |
+
# 4. mid
|
1110 |
+
if self.mid_block is not None:
|
1111 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1112 |
+
sample, spatial_attn_inputs, spatial_attn_idx = self.mid_block(
|
1113 |
+
sample,
|
1114 |
+
spatial_attn_inputs=spatial_attn_inputs,
|
1115 |
+
spatial_attn_idx=spatial_attn_idx,
|
1116 |
+
temb=emb,
|
1117 |
+
encoder_hidden_states=encoder_hidden_states,
|
1118 |
+
attention_mask=attention_mask,
|
1119 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1120 |
+
encoder_attention_mask=encoder_attention_mask,
|
1121 |
+
)
|
1122 |
+
else:
|
1123 |
+
sample = self.mid_block(sample, emb)
|
1124 |
+
|
1125 |
+
# To support T2I-Adapter-XL
|
1126 |
+
if (
|
1127 |
+
is_adapter
|
1128 |
+
and len(down_intrablock_additional_residuals) > 0
|
1129 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1130 |
+
):
|
1131 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1132 |
+
|
1133 |
+
if is_controlnet:
|
1134 |
+
sample = sample + mid_block_additional_residual
|
1135 |
+
|
1136 |
+
# 5. up
|
1137 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1138 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1139 |
+
|
1140 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1141 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1142 |
+
|
1143 |
+
# if we have not reached the final block and need to forward the
|
1144 |
+
# upsample size, we do it here
|
1145 |
+
if not is_final_block and forward_upsample_size:
|
1146 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1147 |
+
|
1148 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1149 |
+
sample, spatial_attn_inputs, spatial_attn_idx = upsample_block(
|
1150 |
+
hidden_states=sample,
|
1151 |
+
spatial_attn_inputs=spatial_attn_inputs,
|
1152 |
+
spatial_attn_idx=spatial_attn_idx,
|
1153 |
+
temb=emb,
|
1154 |
+
res_hidden_states_tuple=res_samples,
|
1155 |
+
encoder_hidden_states=encoder_hidden_states,
|
1156 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1157 |
+
upsample_size=upsample_size,
|
1158 |
+
attention_mask=attention_mask,
|
1159 |
+
encoder_attention_mask=encoder_attention_mask,
|
1160 |
+
)
|
1161 |
+
else:
|
1162 |
+
sample = upsample_block(
|
1163 |
+
hidden_states=sample,
|
1164 |
+
temb=emb,
|
1165 |
+
res_hidden_states_tuple=res_samples,
|
1166 |
+
upsample_size=upsample_size,
|
1167 |
+
scale=lora_scale,
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
# 6. post-process
|
1171 |
+
if self.conv_norm_out:
|
1172 |
+
sample = self.conv_norm_out(sample)
|
1173 |
+
sample = self.conv_act(sample)
|
1174 |
+
sample = self.conv_out(sample)
|
1175 |
+
|
1176 |
+
if USE_PEFT_BACKEND:
|
1177 |
+
# remove `lora_scale` from each PEFT layer
|
1178 |
+
unscale_lora_layers(self, lora_scale)
|
1179 |
+
|
1180 |
+
if not return_dict:
|
1181 |
+
return (sample,)
|
1182 |
+
|
1183 |
+
return UNet2DConditionOutput(sample=sample)
|
preprocess/humanparsing/datasets/__init__.py
ADDED
File without changes
|
preprocess/humanparsing/datasets/datasets.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
"""
|
5 |
+
@Author : Peike Li
|
6 |
+
@Contact : peike.li@yahoo.com
|
7 |
+
@File : datasets.py
|
8 |
+
@Time : 8/4/19 3:35 PM
|
9 |
+
@Desc :
|
10 |
+
@License : This source code is licensed under the license found in the
|
11 |
+
LICENSE file in the root directory of this source tree.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import os
|
15 |
+
import numpy as np
|
16 |
+
import random
|
17 |
+
import torch
|
18 |
+
import cv2
|
19 |
+
from torch.utils import data
|
20 |
+
from utils.transforms import get_affine_transform
|
21 |
+
|
22 |
+
|
23 |
+
class LIPDataSet(data.Dataset):
|
24 |
+
def __init__(self, root, dataset, crop_size=[473, 473], scale_factor=0.25,
|
25 |
+
rotation_factor=30, ignore_label=255, transform=None):
|
26 |
+
self.root = root
|
27 |
+
self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
|
28 |
+
self.crop_size = np.asarray(crop_size)
|
29 |
+
self.ignore_label = ignore_label
|
30 |
+
self.scale_factor = scale_factor
|
31 |
+
self.rotation_factor = rotation_factor
|
32 |
+
self.flip_prob = 0.5
|
33 |
+
self.transform = transform
|
34 |
+
self.dataset = dataset
|
35 |
+
|
36 |
+
list_path = os.path.join(self.root, self.dataset + '_id.txt')
|
37 |
+
train_list = [i_id.strip() for i_id in open(list_path)]
|
38 |
+
|
39 |
+
self.train_list = train_list
|
40 |
+
self.number_samples = len(self.train_list)
|
41 |
+
|
42 |
+
def __len__(self):
|
43 |
+
return self.number_samples
|
44 |
+
|
45 |
+
def _box2cs(self, box):
|
46 |
+
x, y, w, h = box[:4]
|
47 |
+
return self._xywh2cs(x, y, w, h)
|
48 |
+
|
49 |
+
def _xywh2cs(self, x, y, w, h):
|
50 |
+
center = np.zeros((2), dtype=np.float32)
|
51 |
+
center[0] = x + w * 0.5
|
52 |
+
center[1] = y + h * 0.5
|
53 |
+
if w > self.aspect_ratio * h:
|
54 |
+
h = w * 1.0 / self.aspect_ratio
|
55 |
+
elif w < self.aspect_ratio * h:
|
56 |
+
w = h * self.aspect_ratio
|
57 |
+
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
|
58 |
+
return center, scale
|
59 |
+
|
60 |
+
def __getitem__(self, index):
|
61 |
+
train_item = self.train_list[index]
|
62 |
+
|
63 |
+
im_path = os.path.join(self.root, self.dataset + '_images', train_item + '.jpg')
|
64 |
+
parsing_anno_path = os.path.join(self.root, self.dataset + '_segmentations', train_item + '.png')
|
65 |
+
|
66 |
+
im = cv2.imread(im_path, cv2.IMREAD_COLOR)
|
67 |
+
h, w, _ = im.shape
|
68 |
+
parsing_anno = np.zeros((h, w), dtype=np.long)
|
69 |
+
|
70 |
+
# Get person center and scale
|
71 |
+
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
72 |
+
r = 0
|
73 |
+
|
74 |
+
if self.dataset != 'test':
|
75 |
+
# Get pose annotation
|
76 |
+
parsing_anno = cv2.imread(parsing_anno_path, cv2.IMREAD_GRAYSCALE)
|
77 |
+
if self.dataset == 'train' or self.dataset == 'trainval':
|
78 |
+
sf = self.scale_factor
|
79 |
+
rf = self.rotation_factor
|
80 |
+
s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
|
81 |
+
r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if random.random() <= 0.6 else 0
|
82 |
+
|
83 |
+
if random.random() <= self.flip_prob:
|
84 |
+
im = im[:, ::-1, :]
|
85 |
+
parsing_anno = parsing_anno[:, ::-1]
|
86 |
+
person_center[0] = im.shape[1] - person_center[0] - 1
|
87 |
+
right_idx = [15, 17, 19]
|
88 |
+
left_idx = [14, 16, 18]
|
89 |
+
for i in range(0, 3):
|
90 |
+
right_pos = np.where(parsing_anno == right_idx[i])
|
91 |
+
left_pos = np.where(parsing_anno == left_idx[i])
|
92 |
+
parsing_anno[right_pos[0], right_pos[1]] = left_idx[i]
|
93 |
+
parsing_anno[left_pos[0], left_pos[1]] = right_idx[i]
|
94 |
+
|
95 |
+
trans = get_affine_transform(person_center, s, r, self.crop_size)
|
96 |
+
input = cv2.warpAffine(
|
97 |
+
im,
|
98 |
+
trans,
|
99 |
+
(int(self.crop_size[1]), int(self.crop_size[0])),
|
100 |
+
flags=cv2.INTER_LINEAR,
|
101 |
+
borderMode=cv2.BORDER_CONSTANT,
|
102 |
+
borderValue=(0, 0, 0))
|
103 |
+
|
104 |
+
if self.transform:
|
105 |
+
input = self.transform(input)
|
106 |
+
|
107 |
+
meta = {
|
108 |
+
'name': train_item,
|
109 |
+
'center': person_center,
|
110 |
+
'height': h,
|
111 |
+
'width': w,
|
112 |
+
'scale': s,
|
113 |
+
'rotation': r
|
114 |
+
}
|
115 |
+
|
116 |
+
if self.dataset == 'val' or self.dataset == 'test':
|
117 |
+
return input, meta
|
118 |
+
else:
|
119 |
+
label_parsing = cv2.warpAffine(
|
120 |
+
parsing_anno,
|
121 |
+
trans,
|
122 |
+
(int(self.crop_size[1]), int(self.crop_size[0])),
|
123 |
+
flags=cv2.INTER_NEAREST,
|
124 |
+
borderMode=cv2.BORDER_CONSTANT,
|
125 |
+
borderValue=(255))
|
126 |
+
|
127 |
+
label_parsing = torch.from_numpy(label_parsing)
|
128 |
+
|
129 |
+
return input, label_parsing, meta
|
130 |
+
|
131 |
+
|
132 |
+
class LIPDataValSet(data.Dataset):
|
133 |
+
def __init__(self, root, dataset='val', crop_size=[473, 473], transform=None, flip=False):
|
134 |
+
self.root = root
|
135 |
+
self.crop_size = crop_size
|
136 |
+
self.transform = transform
|
137 |
+
self.flip = flip
|
138 |
+
self.dataset = dataset
|
139 |
+
self.root = root
|
140 |
+
self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
|
141 |
+
self.crop_size = np.asarray(crop_size)
|
142 |
+
|
143 |
+
list_path = os.path.join(self.root, self.dataset + '_id.txt')
|
144 |
+
val_list = [i_id.strip() for i_id in open(list_path)]
|
145 |
+
|
146 |
+
self.val_list = val_list
|
147 |
+
self.number_samples = len(self.val_list)
|
148 |
+
|
149 |
+
def __len__(self):
|
150 |
+
return len(self.val_list)
|
151 |
+
|
152 |
+
def _box2cs(self, box):
|
153 |
+
x, y, w, h = box[:4]
|
154 |
+
return self._xywh2cs(x, y, w, h)
|
155 |
+
|
156 |
+
def _xywh2cs(self, x, y, w, h):
|
157 |
+
center = np.zeros((2), dtype=np.float32)
|
158 |
+
center[0] = x + w * 0.5
|
159 |
+
center[1] = y + h * 0.5
|
160 |
+
if w > self.aspect_ratio * h:
|
161 |
+
h = w * 1.0 / self.aspect_ratio
|
162 |
+
elif w < self.aspect_ratio * h:
|
163 |
+
w = h * self.aspect_ratio
|
164 |
+
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
|
165 |
+
|
166 |
+
return center, scale
|
167 |
+
|
168 |
+
def __getitem__(self, index):
|
169 |
+
val_item = self.val_list[index]
|
170 |
+
# Load training image
|
171 |
+
im_path = os.path.join(self.root, self.dataset + '_images', val_item + '.jpg')
|
172 |
+
im = cv2.imread(im_path, cv2.IMREAD_COLOR)
|
173 |
+
h, w, _ = im.shape
|
174 |
+
# Get person center and scale
|
175 |
+
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
176 |
+
r = 0
|
177 |
+
trans = get_affine_transform(person_center, s, r, self.crop_size)
|
178 |
+
input = cv2.warpAffine(
|
179 |
+
im,
|
180 |
+
trans,
|
181 |
+
(int(self.crop_size[1]), int(self.crop_size[0])),
|
182 |
+
flags=cv2.INTER_LINEAR,
|
183 |
+
borderMode=cv2.BORDER_CONSTANT,
|
184 |
+
borderValue=(0, 0, 0))
|
185 |
+
input = self.transform(input)
|
186 |
+
flip_input = input.flip(dims=[-1])
|
187 |
+
if self.flip:
|
188 |
+
batch_input_im = torch.stack([input, flip_input])
|
189 |
+
else:
|
190 |
+
batch_input_im = input
|
191 |
+
|
192 |
+
meta = {
|
193 |
+
'name': val_item,
|
194 |
+
'center': person_center,
|
195 |
+
'height': h,
|
196 |
+
'width': w,
|
197 |
+
'scale': s,
|
198 |
+
'rotation': r
|
199 |
+
}
|
200 |
+
|
201 |
+
return batch_input_im, meta
|
preprocess/humanparsing/datasets/simple_extractor_dataset.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
"""
|
5 |
+
@Author : Peike Li
|
6 |
+
@Contact : peike.li@yahoo.com
|
7 |
+
@File : dataset.py
|
8 |
+
@Time : 8/30/19 9:12 PM
|
9 |
+
@Desc : Dataset Definition
|
10 |
+
@License : This source code is licensed under the license found in the
|
11 |
+
LICENSE file in the root directory of this source tree.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import os
|
15 |
+
import pdb
|
16 |
+
|
17 |
+
import cv2
|
18 |
+
import numpy as np
|
19 |
+
from PIL import Image
|
20 |
+
from torch.utils import data
|
21 |
+
from utils.transforms import get_affine_transform
|
22 |
+
|
23 |
+
|
24 |
+
class SimpleFolderDataset(data.Dataset):
|
25 |
+
def __init__(self, root, input_size=[512, 512], transform=None):
|
26 |
+
self.root = root
|
27 |
+
self.input_size = input_size
|
28 |
+
self.transform = transform
|
29 |
+
self.aspect_ratio = input_size[1] * 1.0 / input_size[0]
|
30 |
+
self.input_size = np.asarray(input_size)
|
31 |
+
self.is_pil_image = False
|
32 |
+
if isinstance(root, Image.Image):
|
33 |
+
self.file_list = [root]
|
34 |
+
self.is_pil_image = True
|
35 |
+
elif os.path.isfile(root):
|
36 |
+
self.file_list = [os.path.basename(root)]
|
37 |
+
self.root = os.path.dirname(root)
|
38 |
+
else:
|
39 |
+
self.file_list = os.listdir(self.root)
|
40 |
+
|
41 |
+
def __len__(self):
|
42 |
+
return len(self.file_list)
|
43 |
+
|
44 |
+
def _box2cs(self, box):
|
45 |
+
x, y, w, h = box[:4]
|
46 |
+
return self._xywh2cs(x, y, w, h)
|
47 |
+
|
48 |
+
def _xywh2cs(self, x, y, w, h):
|
49 |
+
center = np.zeros((2), dtype=np.float32)
|
50 |
+
center[0] = x + w * 0.5
|
51 |
+
center[1] = y + h * 0.5
|
52 |
+
if w > self.aspect_ratio * h:
|
53 |
+
h = w * 1.0 / self.aspect_ratio
|
54 |
+
elif w < self.aspect_ratio * h:
|
55 |
+
w = h * self.aspect_ratio
|
56 |
+
scale = np.array([w, h], dtype=np.float32)
|
57 |
+
return center, scale
|
58 |
+
|
59 |
+
def __getitem__(self, index):
|
60 |
+
if self.is_pil_image:
|
61 |
+
img = np.asarray(self.file_list[index])[:, :, [2, 1, 0]]
|
62 |
+
else:
|
63 |
+
img_name = self.file_list[index]
|
64 |
+
img_path = os.path.join(self.root, img_name)
|
65 |
+
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
66 |
+
h, w, _ = img.shape
|
67 |
+
|
68 |
+
# Get person center and scale
|
69 |
+
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
70 |
+
r = 0
|
71 |
+
trans = get_affine_transform(person_center, s, r, self.input_size)
|
72 |
+
input = cv2.warpAffine(
|
73 |
+
img,
|
74 |
+
trans,
|
75 |
+
(int(self.input_size[1]), int(self.input_size[0])),
|
76 |
+
flags=cv2.INTER_LINEAR,
|
77 |
+
borderMode=cv2.BORDER_CONSTANT,
|
78 |
+
borderValue=(0, 0, 0))
|
79 |
+
|
80 |
+
input = self.transform(input)
|
81 |
+
meta = {
|
82 |
+
'center': person_center,
|
83 |
+
'height': h,
|
84 |
+
'width': w,
|
85 |
+
'scale': s,
|
86 |
+
'rotation': r
|
87 |
+
}
|
88 |
+
|
89 |
+
return input, meta
|
preprocess/humanparsing/datasets/target_generation.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
|
5 |
+
def generate_edge_tensor(label, edge_width=3):
|
6 |
+
label = label.type(torch.cuda.FloatTensor)
|
7 |
+
if len(label.shape) == 2:
|
8 |
+
label = label.unsqueeze(0)
|
9 |
+
n, h, w = label.shape
|
10 |
+
edge = torch.zeros(label.shape, dtype=torch.float).cuda()
|
11 |
+
# right
|
12 |
+
edge_right = edge[:, 1:h, :]
|
13 |
+
edge_right[(label[:, 1:h, :] != label[:, :h - 1, :]) & (label[:, 1:h, :] != 255)
|
14 |
+
& (label[:, :h - 1, :] != 255)] = 1
|
15 |
+
|
16 |
+
# up
|
17 |
+
edge_up = edge[:, :, :w - 1]
|
18 |
+
edge_up[(label[:, :, :w - 1] != label[:, :, 1:w])
|
19 |
+
& (label[:, :, :w - 1] != 255)
|
20 |
+
& (label[:, :, 1:w] != 255)] = 1
|
21 |
+
|
22 |
+
# upright
|
23 |
+
edge_upright = edge[:, :h - 1, :w - 1]
|
24 |
+
edge_upright[(label[:, :h - 1, :w - 1] != label[:, 1:h, 1:w])
|
25 |
+
& (label[:, :h - 1, :w - 1] != 255)
|
26 |
+
& (label[:, 1:h, 1:w] != 255)] = 1
|
27 |
+
|
28 |
+
# bottomright
|
29 |
+
edge_bottomright = edge[:, :h - 1, 1:w]
|
30 |
+
edge_bottomright[(label[:, :h - 1, 1:w] != label[:, 1:h, :w - 1])
|
31 |
+
& (label[:, :h - 1, 1:w] != 255)
|
32 |
+
& (label[:, 1:h, :w - 1] != 255)] = 1
|
33 |
+
|
34 |
+
kernel = torch.ones((1, 1, edge_width, edge_width), dtype=torch.float).cuda()
|
35 |
+
with torch.no_grad():
|
36 |
+
edge = edge.unsqueeze(1)
|
37 |
+
edge = F.conv2d(edge, kernel, stride=1, padding=1)
|
38 |
+
edge[edge!=0] = 1
|
39 |
+
edge = edge.squeeze()
|
40 |
+
return edge
|
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/human_to_coco.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
import pycococreatortools
|
9 |
+
|
10 |
+
|
11 |
+
def get_arguments():
|
12 |
+
parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
|
13 |
+
parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
|
14 |
+
parser.add_argument("--json_save_dir", type=str, default='../data/msrcnn_finetune_annotations',
|
15 |
+
help="path to save coco-style annotation json file")
|
16 |
+
parser.add_argument("--use_val", type=bool, default=False,
|
17 |
+
help="use train+val set for finetuning or not")
|
18 |
+
parser.add_argument("--train_img_dir", type=str, default='../data/instance-level_human_parsing/Training/Images',
|
19 |
+
help="train image path")
|
20 |
+
parser.add_argument("--train_anno_dir", type=str,
|
21 |
+
default='../data/instance-level_human_parsing/Training/Human_ids',
|
22 |
+
help="train human mask path")
|
23 |
+
parser.add_argument("--val_img_dir", type=str, default='../data/instance-level_human_parsing/Validation/Images',
|
24 |
+
help="val image path")
|
25 |
+
parser.add_argument("--val_anno_dir", type=str,
|
26 |
+
default='../data/instance-level_human_parsing/Validation/Human_ids',
|
27 |
+
help="val human mask path")
|
28 |
+
return parser.parse_args()
|
29 |
+
|
30 |
+
|
31 |
+
def main(args):
|
32 |
+
INFO = {
|
33 |
+
"description": args.split_name + " Dataset",
|
34 |
+
"url": "",
|
35 |
+
"version": "",
|
36 |
+
"year": 2019,
|
37 |
+
"contributor": "xyq",
|
38 |
+
"date_created": datetime.datetime.utcnow().isoformat(' ')
|
39 |
+
}
|
40 |
+
|
41 |
+
LICENSES = [
|
42 |
+
{
|
43 |
+
"id": 1,
|
44 |
+
"name": "",
|
45 |
+
"url": ""
|
46 |
+
}
|
47 |
+
]
|
48 |
+
|
49 |
+
CATEGORIES = [
|
50 |
+
{
|
51 |
+
'id': 1,
|
52 |
+
'name': 'person',
|
53 |
+
'supercategory': 'person',
|
54 |
+
},
|
55 |
+
]
|
56 |
+
|
57 |
+
coco_output = {
|
58 |
+
"info": INFO,
|
59 |
+
"licenses": LICENSES,
|
60 |
+
"categories": CATEGORIES,
|
61 |
+
"images": [],
|
62 |
+
"annotations": []
|
63 |
+
}
|
64 |
+
|
65 |
+
image_id = 1
|
66 |
+
segmentation_id = 1
|
67 |
+
|
68 |
+
for image_name in os.listdir(args.train_img_dir):
|
69 |
+
image = Image.open(os.path.join(args.train_img_dir, image_name))
|
70 |
+
image_info = pycococreatortools.create_image_info(
|
71 |
+
image_id, image_name, image.size
|
72 |
+
)
|
73 |
+
coco_output["images"].append(image_info)
|
74 |
+
|
75 |
+
human_mask_name = os.path.splitext(image_name)[0] + '.png'
|
76 |
+
human_mask = np.asarray(Image.open(os.path.join(args.train_anno_dir, human_mask_name)))
|
77 |
+
human_gt_labels = np.unique(human_mask)
|
78 |
+
|
79 |
+
for i in range(1, len(human_gt_labels)):
|
80 |
+
category_info = {'id': 1, 'is_crowd': 0}
|
81 |
+
binary_mask = np.uint8(human_mask == i)
|
82 |
+
annotation_info = pycococreatortools.create_annotation_info(
|
83 |
+
segmentation_id, image_id, category_info, binary_mask,
|
84 |
+
image.size, tolerance=10
|
85 |
+
)
|
86 |
+
if annotation_info is not None:
|
87 |
+
coco_output["annotations"].append(annotation_info)
|
88 |
+
|
89 |
+
segmentation_id += 1
|
90 |
+
image_id += 1
|
91 |
+
|
92 |
+
if not os.path.exists(args.json_save_dir):
|
93 |
+
os.makedirs(args.json_save_dir)
|
94 |
+
if not args.use_val:
|
95 |
+
with open('{}/{}_train.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
|
96 |
+
json.dump(coco_output, output_json_file)
|
97 |
+
else:
|
98 |
+
for image_name in os.listdir(args.val_img_dir):
|
99 |
+
image = Image.open(os.path.join(args.val_img_dir, image_name))
|
100 |
+
image_info = pycococreatortools.create_image_info(
|
101 |
+
image_id, image_name, image.size
|
102 |
+
)
|
103 |
+
coco_output["images"].append(image_info)
|
104 |
+
|
105 |
+
human_mask_name = os.path.splitext(image_name)[0] + '.png'
|
106 |
+
human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
|
107 |
+
human_gt_labels = np.unique(human_mask)
|
108 |
+
|
109 |
+
for i in range(1, len(human_gt_labels)):
|
110 |
+
category_info = {'id': 1, 'is_crowd': 0}
|
111 |
+
binary_mask = np.uint8(human_mask == i)
|
112 |
+
annotation_info = pycococreatortools.create_annotation_info(
|
113 |
+
segmentation_id, image_id, category_info, binary_mask,
|
114 |
+
image.size, tolerance=10
|
115 |
+
)
|
116 |
+
if annotation_info is not None:
|
117 |
+
coco_output["annotations"].append(annotation_info)
|
118 |
+
|
119 |
+
segmentation_id += 1
|
120 |
+
image_id += 1
|
121 |
+
|
122 |
+
with open('{}/{}_trainval.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
|
123 |
+
json.dump(coco_output, output_json_file)
|
124 |
+
|
125 |
+
coco_output_val = {
|
126 |
+
"info": INFO,
|
127 |
+
"licenses": LICENSES,
|
128 |
+
"categories": CATEGORIES,
|
129 |
+
"images": [],
|
130 |
+
"annotations": []
|
131 |
+
}
|
132 |
+
|
133 |
+
image_id_val = 1
|
134 |
+
segmentation_id_val = 1
|
135 |
+
|
136 |
+
for image_name in os.listdir(args.val_img_dir):
|
137 |
+
image = Image.open(os.path.join(args.val_img_dir, image_name))
|
138 |
+
image_info = pycococreatortools.create_image_info(
|
139 |
+
image_id_val, image_name, image.size
|
140 |
+
)
|
141 |
+
coco_output_val["images"].append(image_info)
|
142 |
+
|
143 |
+
human_mask_name = os.path.splitext(image_name)[0] + '.png'
|
144 |
+
human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
|
145 |
+
human_gt_labels = np.unique(human_mask)
|
146 |
+
|
147 |
+
for i in range(1, len(human_gt_labels)):
|
148 |
+
category_info = {'id': 1, 'is_crowd': 0}
|
149 |
+
binary_mask = np.uint8(human_mask == i)
|
150 |
+
annotation_info = pycococreatortools.create_annotation_info(
|
151 |
+
segmentation_id_val, image_id_val, category_info, binary_mask,
|
152 |
+
image.size, tolerance=10
|
153 |
+
)
|
154 |
+
if annotation_info is not None:
|
155 |
+
coco_output_val["annotations"].append(annotation_info)
|
156 |
+
|
157 |
+
segmentation_id_val += 1
|
158 |
+
image_id_val += 1
|
159 |
+
|
160 |
+
with open('{}/{}_val.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file_val:
|
161 |
+
json.dump(coco_output_val, output_json_file_val)
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
+
args = get_arguments()
|
166 |
+
main(args)
|
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/pycococreatortools.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import datetime
|
3 |
+
import numpy as np
|
4 |
+
from itertools import groupby
|
5 |
+
from skimage import measure
|
6 |
+
from PIL import Image
|
7 |
+
from pycocotools import mask
|
8 |
+
|
9 |
+
convert = lambda text: int(text) if text.isdigit() else text.lower()
|
10 |
+
natrual_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
|
11 |
+
|
12 |
+
|
13 |
+
def resize_binary_mask(array, new_size):
|
14 |
+
image = Image.fromarray(array.astype(np.uint8) * 255)
|
15 |
+
image = image.resize(new_size)
|
16 |
+
return np.asarray(image).astype(np.bool_)
|
17 |
+
|
18 |
+
|
19 |
+
def close_contour(contour):
|
20 |
+
if not np.array_equal(contour[0], contour[-1]):
|
21 |
+
contour = np.vstack((contour, contour[0]))
|
22 |
+
return contour
|
23 |
+
|
24 |
+
|
25 |
+
def binary_mask_to_rle(binary_mask):
|
26 |
+
rle = {'counts': [], 'size': list(binary_mask.shape)}
|
27 |
+
counts = rle.get('counts')
|
28 |
+
for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
|
29 |
+
if i == 0 and value == 1:
|
30 |
+
counts.append(0)
|
31 |
+
counts.append(len(list(elements)))
|
32 |
+
|
33 |
+
return rle
|
34 |
+
|
35 |
+
|
36 |
+
def binary_mask_to_polygon(binary_mask, tolerance=0):
|
37 |
+
"""Converts a binary mask to COCO polygon representation
|
38 |
+
Args:
|
39 |
+
binary_mask: a 2D binary numpy array where '1's represent the object
|
40 |
+
tolerance: Maximum distance from original points of polygon to approximated
|
41 |
+
polygonal chain. If tolerance is 0, the original coordinate array is returned.
|
42 |
+
"""
|
43 |
+
polygons = []
|
44 |
+
# pad mask to close contours of shapes which start and end at an edge
|
45 |
+
padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
|
46 |
+
contours = measure.find_contours(padded_binary_mask, 0.5)
|
47 |
+
contours = np.subtract(contours, 1)
|
48 |
+
for contour in contours:
|
49 |
+
contour = close_contour(contour)
|
50 |
+
contour = measure.approximate_polygon(contour, tolerance)
|
51 |
+
if len(contour) < 3:
|
52 |
+
continue
|
53 |
+
contour = np.flip(contour, axis=1)
|
54 |
+
segmentation = contour.ravel().tolist()
|
55 |
+
# after padding and subtracting 1 we may get -0.5 points in our segmentation
|
56 |
+
segmentation = [0 if i < 0 else i for i in segmentation]
|
57 |
+
polygons.append(segmentation)
|
58 |
+
|
59 |
+
return polygons
|
60 |
+
|
61 |
+
|
62 |
+
def create_image_info(image_id, file_name, image_size,
|
63 |
+
date_captured=datetime.datetime.utcnow().isoformat(' '),
|
64 |
+
license_id=1, coco_url="", flickr_url=""):
|
65 |
+
image_info = {
|
66 |
+
"id": image_id,
|
67 |
+
"file_name": file_name,
|
68 |
+
"width": image_size[0],
|
69 |
+
"height": image_size[1],
|
70 |
+
"date_captured": date_captured,
|
71 |
+
"license": license_id,
|
72 |
+
"coco_url": coco_url,
|
73 |
+
"flickr_url": flickr_url
|
74 |
+
}
|
75 |
+
|
76 |
+
return image_info
|
77 |
+
|
78 |
+
|
79 |
+
def create_annotation_info(annotation_id, image_id, category_info, binary_mask,
|
80 |
+
image_size=None, tolerance=2, bounding_box=None):
|
81 |
+
if image_size is not None:
|
82 |
+
binary_mask = resize_binary_mask(binary_mask, image_size)
|
83 |
+
|
84 |
+
binary_mask_encoded = mask.encode(np.asfortranarray(binary_mask.astype(np.uint8)))
|
85 |
+
|
86 |
+
area = mask.area(binary_mask_encoded)
|
87 |
+
if area < 1:
|
88 |
+
return None
|
89 |
+
|
90 |
+
if bounding_box is None:
|
91 |
+
bounding_box = mask.toBbox(binary_mask_encoded)
|
92 |
+
|
93 |
+
if category_info["is_crowd"]:
|
94 |
+
is_crowd = 1
|
95 |
+
segmentation = binary_mask_to_rle(binary_mask)
|
96 |
+
else:
|
97 |
+
is_crowd = 0
|
98 |
+
segmentation = binary_mask_to_polygon(binary_mask, tolerance)
|
99 |
+
if not segmentation:
|
100 |
+
return None
|
101 |
+
|
102 |
+
annotation_info = {
|
103 |
+
"id": annotation_id,
|
104 |
+
"image_id": image_id,
|
105 |
+
"category_id": category_info["id"],
|
106 |
+
"iscrowd": is_crowd,
|
107 |
+
"area": area.tolist(),
|
108 |
+
"bbox": bounding_box.tolist(),
|
109 |
+
"segmentation": segmentation,
|
110 |
+
"width": binary_mask.shape[1],
|
111 |
+
"height": binary_mask.shape[0],
|
112 |
+
}
|
113 |
+
|
114 |
+
return annotation_info
|
preprocess/humanparsing/mhp_extension/coco_style_annotation_creator/test_human2coco_format.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
import pycococreatortools
|
8 |
+
|
9 |
+
|
10 |
+
def get_arguments():
|
11 |
+
parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
|
12 |
+
parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
|
13 |
+
parser.add_argument("--json_save_dir", type=str, default='../data/CIHP/annotations',
|
14 |
+
help="path to save coco-style annotation json file")
|
15 |
+
parser.add_argument("--test_img_dir", type=str, default='../data/CIHP/Testing/Images',
|
16 |
+
help="test image path")
|
17 |
+
return parser.parse_args()
|
18 |
+
|
19 |
+
args = get_arguments()
|
20 |
+
|
21 |
+
INFO = {
|
22 |
+
"description": args.dataset + "Dataset",
|
23 |
+
"url": "",
|
24 |
+
"version": "",
|
25 |
+
"year": 2020,
|
26 |
+
"contributor": "yunqiuxu",
|
27 |
+
"date_created": datetime.datetime.utcnow().isoformat(' ')
|
28 |
+
}
|
29 |
+
|
30 |
+
LICENSES = [
|
31 |
+
{
|
32 |
+
"id": 1,
|
33 |
+
"name": "",
|
34 |
+
"url": ""
|
35 |
+
}
|
36 |
+
]
|
37 |
+
|
38 |
+
CATEGORIES = [
|
39 |
+
{
|
40 |
+
'id': 1,
|
41 |
+
'name': 'person',
|
42 |
+
'supercategory': 'person',
|
43 |
+
},
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
def main(args):
|
48 |
+
coco_output = {
|
49 |
+
"info": INFO,
|
50 |
+
"licenses": LICENSES,
|
51 |
+
"categories": CATEGORIES,
|
52 |
+
"images": [],
|
53 |
+
"annotations": []
|
54 |
+
}
|
55 |
+
|
56 |
+
image_id = 1
|
57 |
+
|
58 |
+
for image_name in os.listdir(args.test_img_dir):
|
59 |
+
image = Image.open(os.path.join(args.test_img_dir, image_name))
|
60 |
+
image_info = pycococreatortools.create_image_info(
|
61 |
+
image_id, image_name, image.size
|
62 |
+
)
|
63 |
+
coco_output["images"].append(image_info)
|
64 |
+
image_id += 1
|
65 |
+
|
66 |
+
if not os.path.exists(os.path.join(args.json_save_dir)):
|
67 |
+
os.mkdir(os.path.join(args.json_save_dir))
|
68 |
+
|
69 |
+
with open('{}/{}.json'.format(args.json_save_dir, args.dataset), 'w') as output_json_file:
|
70 |
+
json.dump(coco_output, output_json_file)
|
71 |
+
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
main(args)
|
preprocess/humanparsing/mhp_extension/detectron2/.circleci/config.yml
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python CircleCI 2.0 configuration file
|
2 |
+
#
|
3 |
+
# Check https://circleci.com/docs/2.0/language-python/ for more details
|
4 |
+
#
|
5 |
+
version: 2
|
6 |
+
|
7 |
+
# -------------------------------------------------------------------------------------
|
8 |
+
# Environments to run the jobs in
|
9 |
+
# -------------------------------------------------------------------------------------
|
10 |
+
cpu: &cpu
|
11 |
+
docker:
|
12 |
+
- image: circleci/python:3.6.8-stretch
|
13 |
+
resource_class: medium
|
14 |
+
|
15 |
+
gpu: &gpu
|
16 |
+
machine:
|
17 |
+
image: ubuntu-1604:201903-01
|
18 |
+
docker_layer_caching: true
|
19 |
+
resource_class: gpu.small
|
20 |
+
|
21 |
+
# -------------------------------------------------------------------------------------
|
22 |
+
# Re-usable commands
|
23 |
+
# -------------------------------------------------------------------------------------
|
24 |
+
install_python: &install_python
|
25 |
+
- run:
|
26 |
+
name: Install Python
|
27 |
+
working_directory: ~/
|
28 |
+
command: |
|
29 |
+
pyenv install 3.6.1
|
30 |
+
pyenv global 3.6.1
|
31 |
+
|
32 |
+
setup_venv: &setup_venv
|
33 |
+
- run:
|
34 |
+
name: Setup Virtual Env
|
35 |
+
working_directory: ~/
|
36 |
+
command: |
|
37 |
+
python -m venv ~/venv
|
38 |
+
echo ". ~/venv/bin/activate" >> $BASH_ENV
|
39 |
+
. ~/venv/bin/activate
|
40 |
+
python --version
|
41 |
+
which python
|
42 |
+
which pip
|
43 |
+
pip install --upgrade pip
|
44 |
+
|
45 |
+
install_dep: &install_dep
|
46 |
+
- run:
|
47 |
+
name: Install Dependencies
|
48 |
+
command: |
|
49 |
+
pip install --progress-bar off -U 'git+https://github.com/facebookresearch/fvcore'
|
50 |
+
pip install --progress-bar off cython opencv-python
|
51 |
+
pip install --progress-bar off 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
|
52 |
+
pip install --progress-bar off torch torchvision
|
53 |
+
|
54 |
+
install_detectron2: &install_detectron2
|
55 |
+
- run:
|
56 |
+
name: Install Detectron2
|
57 |
+
command: |
|
58 |
+
gcc --version
|
59 |
+
pip install -U --progress-bar off -e .[dev]
|
60 |
+
python -m detectron2.utils.collect_env
|
61 |
+
|
62 |
+
install_nvidia_driver: &install_nvidia_driver
|
63 |
+
- run:
|
64 |
+
name: Install nvidia driver
|
65 |
+
working_directory: ~/
|
66 |
+
command: |
|
67 |
+
wget -q 'https://s3.amazonaws.com/ossci-linux/nvidia_driver/NVIDIA-Linux-x86_64-430.40.run'
|
68 |
+
sudo /bin/bash ./NVIDIA-Linux-x86_64-430.40.run -s --no-drm
|
69 |
+
nvidia-smi
|
70 |
+
|
71 |
+
run_unittests: &run_unittests
|
72 |
+
- run:
|
73 |
+
name: Run Unit Tests
|
74 |
+
command: |
|
75 |
+
python -m unittest discover -v -s tests
|
76 |
+
|
77 |
+
# -------------------------------------------------------------------------------------
|
78 |
+
# Jobs to run
|
79 |
+
# -------------------------------------------------------------------------------------
|
80 |
+
jobs:
|
81 |
+
cpu_tests:
|
82 |
+
<<: *cpu
|
83 |
+
|
84 |
+
working_directory: ~/detectron2
|
85 |
+
|
86 |
+
steps:
|
87 |
+
- checkout
|
88 |
+
- <<: *setup_venv
|
89 |
+
|
90 |
+
# Cache the venv directory that contains dependencies
|
91 |
+
- restore_cache:
|
92 |
+
keys:
|
93 |
+
- cache-key-{{ .Branch }}-ID-20200425
|
94 |
+
|
95 |
+
- <<: *install_dep
|
96 |
+
|
97 |
+
- save_cache:
|
98 |
+
paths:
|
99 |
+
- ~/venv
|
100 |
+
key: cache-key-{{ .Branch }}-ID-20200425
|
101 |
+
|
102 |
+
- <<: *install_detectron2
|
103 |
+
|
104 |
+
- run:
|
105 |
+
name: isort
|
106 |
+
command: |
|
107 |
+
isort -c -sp .
|
108 |
+
- run:
|
109 |
+
name: black
|
110 |
+
command: |
|
111 |
+
black --check -l 100 .
|
112 |
+
- run:
|
113 |
+
name: flake8
|
114 |
+
command: |
|
115 |
+
flake8 .
|
116 |
+
|
117 |
+
- <<: *run_unittests
|
118 |
+
|
119 |
+
gpu_tests:
|
120 |
+
<<: *gpu
|
121 |
+
|
122 |
+
working_directory: ~/detectron2
|
123 |
+
|
124 |
+
steps:
|
125 |
+
- checkout
|
126 |
+
- <<: *install_nvidia_driver
|
127 |
+
|
128 |
+
- run:
|
129 |
+
name: Install nvidia-docker
|
130 |
+
working_directory: ~/
|
131 |
+
command: |
|
132 |
+
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
133 |
+
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
134 |
+
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
|
135 |
+
sudo tee /etc/apt/sources.list.d/nvidia-docker.list
|
136 |
+
sudo apt-get update && sudo apt-get install -y nvidia-docker2
|
137 |
+
# reload the docker daemon configuration
|
138 |
+
sudo pkill -SIGHUP dockerd
|
139 |
+
|
140 |
+
- run:
|
141 |
+
name: Launch docker
|
142 |
+
working_directory: ~/detectron2/docker
|
143 |
+
command: |
|
144 |
+
nvidia-docker build -t detectron2:v0 -f Dockerfile-circleci .
|
145 |
+
nvidia-docker run -itd --name d2 detectron2:v0
|
146 |
+
docker exec -it d2 nvidia-smi
|
147 |
+
|
148 |
+
- run:
|
149 |
+
name: Build Detectron2
|
150 |
+
command: |
|
151 |
+
docker exec -it d2 pip install 'git+https://github.com/facebookresearch/fvcore'
|
152 |
+
docker cp ~/detectron2 d2:/detectron2
|
153 |
+
# This will build d2 for the target GPU arch only
|
154 |
+
docker exec -it d2 pip install -e /detectron2
|
155 |
+
docker exec -it d2 python3 -m detectron2.utils.collect_env
|
156 |
+
docker exec -it d2 python3 -c 'import torch; assert(torch.cuda.is_available())'
|
157 |
+
|
158 |
+
- run:
|
159 |
+
name: Run Unit Tests
|
160 |
+
command: |
|
161 |
+
docker exec -e CIRCLECI=true -it d2 python3 -m unittest discover -v -s /detectron2/tests
|
162 |
+
|
163 |
+
workflows:
|
164 |
+
version: 2
|
165 |
+
regular_test:
|
166 |
+
jobs:
|
167 |
+
- cpu_tests
|
168 |
+
- gpu_tests
|
169 |
+
|
170 |
+
#nightly_test:
|
171 |
+
#jobs:
|
172 |
+
#- gpu_tests
|
173 |
+
#triggers:
|
174 |
+
#- schedule:
|
175 |
+
#cron: "0 0 * * *"
|
176 |
+
#filters:
|
177 |
+
#branches:
|
178 |
+
#only:
|
179 |
+
#- master
|
preprocess/humanparsing/mhp_extension/detectron2/.clang-format
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
AccessModifierOffset: -1
|
2 |
+
AlignAfterOpenBracket: AlwaysBreak
|
3 |
+
AlignConsecutiveAssignments: false
|
4 |
+
AlignConsecutiveDeclarations: false
|
5 |
+
AlignEscapedNewlinesLeft: true
|
6 |
+
AlignOperands: false
|
7 |
+
AlignTrailingComments: false
|
8 |
+
AllowAllParametersOfDeclarationOnNextLine: false
|
9 |
+
AllowShortBlocksOnASingleLine: false
|
10 |
+
AllowShortCaseLabelsOnASingleLine: false
|
11 |
+
AllowShortFunctionsOnASingleLine: Empty
|
12 |
+
AllowShortIfStatementsOnASingleLine: false
|
13 |
+
AllowShortLoopsOnASingleLine: false
|
14 |
+
AlwaysBreakAfterReturnType: None
|
15 |
+
AlwaysBreakBeforeMultilineStrings: true
|
16 |
+
AlwaysBreakTemplateDeclarations: true
|
17 |
+
BinPackArguments: false
|
18 |
+
BinPackParameters: false
|
19 |
+
BraceWrapping:
|
20 |
+
AfterClass: false
|
21 |
+
AfterControlStatement: false
|
22 |
+
AfterEnum: false
|
23 |
+
AfterFunction: false
|
24 |
+
AfterNamespace: false
|
25 |
+
AfterObjCDeclaration: false
|
26 |
+
AfterStruct: false
|
27 |
+
AfterUnion: false
|
28 |
+
BeforeCatch: false
|
29 |
+
BeforeElse: false
|
30 |
+
IndentBraces: false
|
31 |
+
BreakBeforeBinaryOperators: None
|
32 |
+
BreakBeforeBraces: Attach
|
33 |
+
BreakBeforeTernaryOperators: true
|
34 |
+
BreakConstructorInitializersBeforeComma: false
|
35 |
+
BreakAfterJavaFieldAnnotations: false
|
36 |
+
BreakStringLiterals: false
|
37 |
+
ColumnLimit: 80
|
38 |
+
CommentPragmas: '^ IWYU pragma:'
|
39 |
+
ConstructorInitializerAllOnOneLineOrOnePerLine: true
|
40 |
+
ConstructorInitializerIndentWidth: 4
|
41 |
+
ContinuationIndentWidth: 4
|
42 |
+
Cpp11BracedListStyle: true
|
43 |
+
DerivePointerAlignment: false
|
44 |
+
DisableFormat: false
|
45 |
+
ForEachMacros: [ FOR_EACH, FOR_EACH_ENUMERATE, FOR_EACH_KV, FOR_EACH_R, FOR_EACH_RANGE, ]
|
46 |
+
IncludeCategories:
|
47 |
+
- Regex: '^<.*\.h(pp)?>'
|
48 |
+
Priority: 1
|
49 |
+
- Regex: '^<.*'
|
50 |
+
Priority: 2
|
51 |
+
- Regex: '.*'
|
52 |
+
Priority: 3
|
53 |
+
IndentCaseLabels: true
|
54 |
+
IndentWidth: 2
|
55 |
+
IndentWrappedFunctionNames: false
|
56 |
+
KeepEmptyLinesAtTheStartOfBlocks: false
|
57 |
+
MacroBlockBegin: ''
|
58 |
+
MacroBlockEnd: ''
|
59 |
+
MaxEmptyLinesToKeep: 1
|
60 |
+
NamespaceIndentation: None
|
61 |
+
ObjCBlockIndentWidth: 2
|
62 |
+
ObjCSpaceAfterProperty: false
|
63 |
+
ObjCSpaceBeforeProtocolList: false
|
64 |
+
PenaltyBreakBeforeFirstCallParameter: 1
|
65 |
+
PenaltyBreakComment: 300
|
66 |
+
PenaltyBreakFirstLessLess: 120
|
67 |
+
PenaltyBreakString: 1000
|
68 |
+
PenaltyExcessCharacter: 1000000
|
69 |
+
PenaltyReturnTypeOnItsOwnLine: 200
|
70 |
+
PointerAlignment: Left
|
71 |
+
ReflowComments: true
|
72 |
+
SortIncludes: true
|
73 |
+
SpaceAfterCStyleCast: false
|
74 |
+
SpaceBeforeAssignmentOperators: true
|
75 |
+
SpaceBeforeParens: ControlStatements
|
76 |
+
SpaceInEmptyParentheses: false
|
77 |
+
SpacesBeforeTrailingComments: 1
|
78 |
+
SpacesInAngles: false
|
79 |
+
SpacesInContainerLiterals: true
|
80 |
+
SpacesInCStyleCastParentheses: false
|
81 |
+
SpacesInParentheses: false
|
82 |
+
SpacesInSquareBrackets: false
|
83 |
+
Standard: Cpp11
|
84 |
+
TabWidth: 8
|
85 |
+
UseTab: Never
|
preprocess/humanparsing/mhp_extension/detectron2/.flake8
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is an example .flake8 config, used when developing *Black* itself.
|
2 |
+
# Keep in sync with setup.cfg which is used for source packages.
|
3 |
+
|
4 |
+
[flake8]
|
5 |
+
ignore = W503, E203, E221, C901, C408, E741
|
6 |
+
max-line-length = 100
|
7 |
+
max-complexity = 18
|
8 |
+
select = B,C,E,F,W,T4,B9
|
9 |
+
exclude = build,__init__.py
|
preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code of Conduct
|
2 |
+
|
3 |
+
Facebook has adopted a Code of Conduct that we expect project participants to adhere to.
|
4 |
+
Please read the [full text](https://code.fb.com/codeofconduct/)
|
5 |
+
so that you can understand what actions will and will not be tolerated.
|
preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Contributing to detectron2
|
2 |
+
|
3 |
+
## Issues
|
4 |
+
We use GitHub issues to track public bugs and questions.
|
5 |
+
Please make sure to follow one of the
|
6 |
+
[issue templates](https://github.com/facebookresearch/detectron2/issues/new/choose)
|
7 |
+
when reporting any issues.
|
8 |
+
|
9 |
+
Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
|
10 |
+
disclosure of security bugs. In those cases, please go through the process
|
11 |
+
outlined on that page and do not file a public issue.
|
12 |
+
|
13 |
+
## Pull Requests
|
14 |
+
We actively welcome your pull requests.
|
15 |
+
|
16 |
+
However, if you're adding any significant features (e.g. > 50 lines), please
|
17 |
+
make sure to have a corresponding issue to discuss your motivation and proposals,
|
18 |
+
before sending a PR. We do not always accept new features, and we take the following
|
19 |
+
factors into consideration:
|
20 |
+
|
21 |
+
1. Whether the same feature can be achieved without modifying detectron2.
|
22 |
+
Detectron2 is designed so that you can implement many extensions from the outside, e.g.
|
23 |
+
those in [projects](https://github.com/facebookresearch/detectron2/tree/master/projects).
|
24 |
+
If some part is not as extensible, you can also bring up the issue to make it more extensible.
|
25 |
+
2. Whether the feature is potentially useful to a large audience, or only to a small portion of users.
|
26 |
+
3. Whether the proposed solution has a good design / interface.
|
27 |
+
4. Whether the proposed solution adds extra mental/practical overhead to users who don't
|
28 |
+
need such feature.
|
29 |
+
5. Whether the proposed solution breaks existing APIs.
|
30 |
+
|
31 |
+
When sending a PR, please do:
|
32 |
+
|
33 |
+
1. If a PR contains multiple orthogonal changes, split it to several PRs.
|
34 |
+
2. If you've added code that should be tested, add tests.
|
35 |
+
3. For PRs that need experiments (e.g. adding a new model or new methods),
|
36 |
+
you don't need to update model zoo, but do provide experiment results in the description of the PR.
|
37 |
+
4. If APIs are changed, update the documentation.
|
38 |
+
5. Make sure your code lints with `./dev/linter.sh`.
|
39 |
+
|
40 |
+
|
41 |
+
## Contributor License Agreement ("CLA")
|
42 |
+
In order to accept your pull request, we need you to submit a CLA. You only need
|
43 |
+
to do this once to work on any of Facebook's open source projects.
|
44 |
+
|
45 |
+
Complete your CLA here: <https://code.facebook.com/cla>
|
46 |
+
|
47 |
+
## License
|
48 |
+
By contributing to detectron2, you agree that your contributions will be licensed
|
49 |
+
under the LICENSE file in the root directory of this source tree.
|
preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg
ADDED
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Please select an issue template from
|
3 |
+
https://github.com/facebookresearch/detectron2/issues/new/choose .
|
4 |
+
|
5 |
+
Otherwise your issue will be closed.
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "π Bugs"
|
3 |
+
about: Report bugs in detectron2
|
4 |
+
title: Please read & provide the following
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
## Instructions To Reproduce the π Bug:
|
9 |
+
|
10 |
+
1. what changes you made (`git diff`) or what code you wrote
|
11 |
+
```
|
12 |
+
<put diff or code here>
|
13 |
+
```
|
14 |
+
2. what exact command you run:
|
15 |
+
3. what you observed (including __full logs__):
|
16 |
+
```
|
17 |
+
<put logs here>
|
18 |
+
```
|
19 |
+
4. please simplify the steps as much as possible so they do not require additional resources to
|
20 |
+
run, such as a private dataset.
|
21 |
+
|
22 |
+
## Expected behavior:
|
23 |
+
|
24 |
+
If there are no obvious error in "what you observed" provided above,
|
25 |
+
please tell us the expected behavior.
|
26 |
+
|
27 |
+
## Environment:
|
28 |
+
|
29 |
+
Provide your environment information using the following command:
|
30 |
+
```
|
31 |
+
wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
|
32 |
+
```
|
33 |
+
|
34 |
+
If your issue looks like an installation issue / environment issue,
|
35 |
+
please first try to solve it yourself with the instructions in
|
36 |
+
https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# require an issue template to be chosen
|
2 |
+
blank_issues_enabled: false
|
3 |
+
|
4 |
+
# Unexpected behaviors & bugs are split to two templates.
|
5 |
+
# When they are one template, users think "it's not a bug" and don't choose the template.
|
6 |
+
#
|
7 |
+
# But the file name is still "unexpected-problems-bugs.md" so that old references
|
8 |
+
# to this issue template still works.
|
9 |
+
# It's ok since this template should be a superset of "bugs.md" (unexpected behaviors is a superset of bugs)
|
preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/feature-request.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
name: "\U0001F680Feature Request"
|
3 |
+
about: Submit a proposal/request for a new detectron2 feature
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
## π Feature
|
8 |
+
A clear and concise description of the feature proposal.
|
9 |
+
|
10 |
+
|
11 |
+
## Motivation & Examples
|
12 |
+
|
13 |
+
Tell us why the feature is useful.
|
14 |
+
|
15 |
+
Describe what the feature would look like, if it is implemented.
|
16 |
+
Best demonstrated using **code examples** in addition to words.
|
17 |
+
|
18 |
+
## Note
|
19 |
+
|
20 |
+
We only consider adding new features if they are relevant to many users.
|
21 |
+
|
22 |
+
If you request implementation of research papers --
|
23 |
+
we only consider papers that have enough significance and prevalance in the object detection field.
|
24 |
+
|
25 |
+
We do not take requests for most projects in the `projects/` directory,
|
26 |
+
because they are research code release that is mainly for other researchers to reproduce results.
|
27 |
+
|
28 |
+
Instead of adding features inside detectron2,
|
29 |
+
you can implement many features by [extending detectron2](https://detectron2.readthedocs.io/tutorials/extend.html).
|
30 |
+
The [projects/](https://github.com/facebookresearch/detectron2/tree/master/projects/) directory contains many of such examples.
|
31 |
+
|