Spaces:
Sleeping
Sleeping
nastasiasnk
commited on
Create imports_utils
Browse files- imports_utils +250 -0
imports_utils
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install requests
|
2 |
+
!pip install specklepy
|
3 |
+
|
4 |
+
import sys
|
5 |
+
|
6 |
+
# delete (if it already exists) , clone repro
|
7 |
+
!rm -rf RECODE_speckle_utils
|
8 |
+
!git clone https://github.com/SerjoschDuering/RECODE_speckle_utils
|
9 |
+
sys.path.append('/content/RECODE_speckle_utils')
|
10 |
+
|
11 |
+
# import from repro
|
12 |
+
import speckle_utils
|
13 |
+
import data_utils
|
14 |
+
|
15 |
+
#import other libaries
|
16 |
+
from specklepy.api.client import SpeckleClient
|
17 |
+
from specklepy.api.credentials import get_default_account, get_local_accounts
|
18 |
+
from specklepy.transports.server import ServerTransport
|
19 |
+
from specklepy.api import operations
|
20 |
+
from specklepy.objects.geometry import Polyline, Point
|
21 |
+
from specklepy.objects import Base
|
22 |
+
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import pandas as pd
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
import seaborn as sns
|
28 |
+
import math
|
29 |
+
import matplotlib
|
30 |
+
from google.colab import files
|
31 |
+
|
32 |
+
import json
|
33 |
+
|
34 |
+
!pip install notion-client
|
35 |
+
|
36 |
+
from notion_client import Client as client_notion
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
# query full database
|
42 |
+
def fetch_all_database_pages(client, database_id):
|
43 |
+
"""
|
44 |
+
Fetches all pages from a specified Notion database.
|
45 |
+
|
46 |
+
:param client: Initialized Notion client.
|
47 |
+
:param database_id: The ID of the Notion database to query.
|
48 |
+
:return: A list containing all pages from the database.
|
49 |
+
"""
|
50 |
+
start_cursor = None
|
51 |
+
all_pages = []
|
52 |
+
|
53 |
+
while True:
|
54 |
+
response = client.databases.query(
|
55 |
+
**{
|
56 |
+
"database_id": database_id,
|
57 |
+
"start_cursor": start_cursor
|
58 |
+
}
|
59 |
+
)
|
60 |
+
|
61 |
+
all_pages.extend(response['results'])
|
62 |
+
|
63 |
+
# Check if there's more data to fetch
|
64 |
+
if response['has_more']:
|
65 |
+
start_cursor = response['next_cursor']
|
66 |
+
else:
|
67 |
+
break
|
68 |
+
|
69 |
+
return all_pages
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def get_property_value(page, property_name):
|
74 |
+
"""
|
75 |
+
Extracts the value from a specific property in a Notion page based on its type.
|
76 |
+
:param page: The Notion page data as retrieved from the API.
|
77 |
+
:param property_name: The name of the property whose value is to be fetched.
|
78 |
+
:return: The value or values contained in the specified property, depending on type.
|
79 |
+
"""
|
80 |
+
# Check if the property exists in the page
|
81 |
+
if property_name not in page['properties']:
|
82 |
+
return None # or raise an error if you prefer
|
83 |
+
|
84 |
+
property_data = page['properties'][property_name]
|
85 |
+
prop_type = property_data['type']
|
86 |
+
|
87 |
+
# Handle 'title' and 'rich_text' types
|
88 |
+
if prop_type in ['title', 'rich_text']:
|
89 |
+
return ''.join(text_block['text']['content'] for text_block in property_data[prop_type])
|
90 |
+
|
91 |
+
# Handle 'number' type
|
92 |
+
elif prop_type == 'number':
|
93 |
+
return property_data[prop_type]
|
94 |
+
|
95 |
+
# Handle 'select' type
|
96 |
+
elif prop_type == 'select':
|
97 |
+
return property_data[prop_type]['name'] if property_data[prop_type] else None
|
98 |
+
|
99 |
+
# Handle 'multi_select' type
|
100 |
+
elif prop_type == 'multi_select':
|
101 |
+
return [option['name'] for option in property_data[prop_type]]
|
102 |
+
|
103 |
+
# Handle 'date' type
|
104 |
+
elif prop_type == 'date':
|
105 |
+
if property_data[prop_type]['end']:
|
106 |
+
return (property_data[prop_type]['start'], property_data[prop_type]['end'])
|
107 |
+
else:
|
108 |
+
return property_data[prop_type]['start']
|
109 |
+
|
110 |
+
# Handle 'relation' type
|
111 |
+
elif prop_type == 'relation':
|
112 |
+
return [relation['id'] for relation in property_data[prop_type]]
|
113 |
+
|
114 |
+
# Handle 'people' type
|
115 |
+
elif prop_type == 'people':
|
116 |
+
return [person['name'] for person in property_data[prop_type] if 'name' in person]
|
117 |
+
|
118 |
+
# Add more handlers as needed for other property types
|
119 |
+
|
120 |
+
else:
|
121 |
+
# Return None or raise an error for unsupported property types
|
122 |
+
return None
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
def get_page_by_id(notion_db_pages, page_id):
|
127 |
+
for pg in notion_db_pages:
|
128 |
+
if pg["id"] == page_id:
|
129 |
+
return pg
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
CLIENT = SpeckleClient(host="https://speckle.xyz/")
|
137 |
+
CLIENT.authenticate_with_token(token=userdata.get('speckle_token'))
|
138 |
+
|
139 |
+
|
140 |
+
notion = client_notion(auth=userdata.get('notion_token'))
|
141 |
+
|
142 |
+
|
143 |
+
stream_id="ebcfc50abe"
|
144 |
+
|
145 |
+
|
146 |
+
# MAIN DISTANCE MATRIX
|
147 |
+
branch_name_dm = "graph_geometry/distance_matrix"
|
148 |
+
commit_id_dm = "cfde6f4ba4" # ebcfc50abe/commits/cfde6f4ba4
|
149 |
+
dm_activityNodes = "activity_node+distance_matrix_ped_mm_noEntr"
|
150 |
+
dm_transportStops = "an_stations+distance_matrix_ped_mm_art_noEntr"
|
151 |
+
|
152 |
+
# LAND USE ATTRIBUTES
|
153 |
+
branch_name_lu = "graph_geometry/activity_nodes_with_land_use"
|
154 |
+
commit_id_lu = "13ae6cdd30"
|
155 |
+
|
156 |
+
|
157 |
+
# LIVABILITY DOMAINS ATTRIBUTES
|
158 |
+
notion_lu_domains = "407c2fce664f4dde8940bb416780a86d"
|
159 |
+
notion_domain_attributes = "01401b78420f4296a2449f587d4ed9c9"
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
lu_attributes = fetch_all_database_pages(notion, notion_lu_domains)
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
domain_attributes = fetch_all_database_pages(notion, notion_domain_attributes)
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
lu_domain_mapper ={}
|
172 |
+
|
173 |
+
subdomains_unique = []
|
174 |
+
|
175 |
+
for page in lu_attributes:
|
176 |
+
value_landuse = get_property_value(page, "LANDUSE")
|
177 |
+
value_subdomain = get_property_value(page, "SUBDOMAIN_LIVEABILITY")
|
178 |
+
if value_subdomain and value_landuse:
|
179 |
+
lu_domain_mapper[value_landuse] = value_subdomain
|
180 |
+
if value_subdomain != "":
|
181 |
+
subdomains_unique.append(value_subdomain)
|
182 |
+
|
183 |
+
subdomains_unique = list(set(subdomains_unique))
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
attribute_mapper ={}
|
190 |
+
|
191 |
+
domains_unique = []
|
192 |
+
|
193 |
+
for page in domain_attributes:
|
194 |
+
subdomain = get_property_value(page, "SUBDOMAIN_UNIQUE")
|
195 |
+
sqm_per_employee = get_property_value(page, "SQM PER EMPL")
|
196 |
+
thresholds = get_property_value(page, "MANHATTAN THRESHOLD")
|
197 |
+
max_points = get_property_value(page, "LIVABILITY MAX POINT")
|
198 |
+
domain = get_property_value(page, "DOMAIN")
|
199 |
+
if thresholds: #domain !="Transportation" and
|
200 |
+
attribute_mapper[subdomain] = {
|
201 |
+
'sqmPerEmpl': [sqm_per_employee if sqm_per_employee != "" else 0],
|
202 |
+
'thresholds': thresholds,
|
203 |
+
'max_points': max_points,
|
204 |
+
'domain': [domain if domain != "" else 0]
|
205 |
+
}
|
206 |
+
|
207 |
+
if domain != "":
|
208 |
+
domains_unique.append(domain)
|
209 |
+
|
210 |
+
domains_unique = list(set(domains_unique))
|
211 |
+
|
212 |
+
|
213 |
+
attribute_mapper[subdomain] = [sqm_per_employee if sqm_per_employee != "" else 0, thresholds,max_points,domain if domain != "" else 0 ]
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
stream_distance_matrice = speckle_utils.getSpeckleStream(stream_id,
|
222 |
+
branch_name_dm,
|
223 |
+
CLIENT,
|
224 |
+
commit_id = commit_id_dm)
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
|
229 |
+
# navigate to list with speckle objects of interest
|
230 |
+
distance_matrices = {}
|
231 |
+
for distM in stream_distance_matrice["@Data"]['@{0}']:
|
232 |
+
for kk in distM.__dict__.keys():
|
233 |
+
try:
|
234 |
+
if kk.split("+")[1].startswith("distance_matrix"):
|
235 |
+
distance_matrix_dict = json.loads(distM[kk])
|
236 |
+
origin_ids = distance_matrix_dict["origin_uuid"]
|
237 |
+
destination_ids = distance_matrix_dict["destination_uuid"]
|
238 |
+
distance_matrix = distance_matrix_dict["matrix"]
|
239 |
+
# Convert the distance matrix to a DataFrame
|
240 |
+
df_distances = pd.DataFrame(distance_matrix, index=origin_ids, columns=destination_ids)
|
241 |
+
|
242 |
+
# i want to add the index & colum names to dist_m_csv
|
243 |
+
#distance_matrices[kk] = dist_m_csv[kk]
|
244 |
+
distance_matrices[kk] = df_distances
|
245 |
+
except:
|
246 |
+
pass
|
247 |
+
|
248 |
+
|
249 |
+
df_dm_transport = distance_matrices[dm_transportStops]
|
250 |
+
|