nastasiasnk commited on
Commit
521213c
·
verified ·
1 Parent(s): fbce734

Update imports_utils.py

Browse files
Files changed (1) hide show
  1. imports_utils.py +50 -0
imports_utils.py CHANGED
@@ -255,6 +255,56 @@ def landusesToSubdomains(DistanceMatrix, LanduseDf, LanduseToSubdomainDict, Uniq
255
  return df_LivabilitySubdomainsArea
256
 
257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
 
259
 
260
 
 
255
  return df_LivabilitySubdomainsArea
256
 
257
 
258
+ def FindWorkplacesNumber (DistanceMatrix,SubdomainAttributeDict,destinationWeights,UniqueSubdomainsList ):
259
+
260
+ df_LivabilitySubdomainsWorkplaces = pd.DataFrame(0, index=DistanceMatrix.index, columns=['jobs'])
261
+
262
+ for subdomain in UniqueSubdomainsList:
263
+ for key, value_list in SubdomainAttributeDict.items():
264
+ sqm_per_empl = float(SubdomainAttributeDict[subdomain]['sqmPerEmpl'])
265
+ if key in destinationWeights.columns and key == subdomain:
266
+ if sqm_per_empl > 0:
267
+ df_LivabilitySubdomainsWorkplaces['jobs'] += (round(destinationWeights[key] / sqm_per_empl,2)).fillna(0)
268
+ else:
269
+ df_LivabilitySubdomainsWorkplaces['jobs'] += 0
270
+
271
+ return df_LivabilitySubdomainsWorkplaces
272
+
273
+
274
+
275
+
276
+ def computeAccessibility (DistanceMatrix, destinationWeights=None,alpha = 0.0038, threshold = 600):
277
+
278
+ decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
279
+
280
+ # for weighted accessibility (e. g. areas)
281
+ if destinationWeights is not None: #not destinationWeights.empty:
282
+ subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=destinationWeights.columns)
283
+ for col in destinationWeights.columns:
284
+ subdomainsAccessibility[col] = (decay_factors * destinationWeights[col].values).sum(axis=1)
285
+ else:
286
+ print("Destination weights parameter is None")
287
+
288
+ return subdomainsAccessibility
289
+
290
+
291
+
292
+ def computeAccessibility_pointOfInterest (DistanceMatrix, columnName, alpha = 0.0038, threshold = 600):
293
+
294
+ decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
295
+
296
+ pointOfInterestAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=[columnName])
297
+ for col in pointOfInterestAccessibility.columns:
298
+ pointOfInterestAccessibility[col] = (decay_factors * 1).sum(axis=1)
299
+
300
+ return pointOfInterestAccessibility
301
+
302
+
303
+
304
+ def remap(value, B_min, B_max, C_min, C_max):
305
+ return C_min + (((value - B_min) / (B_max - B_min))* (C_max - C_min))
306
+
307
+
308
 
309
 
310