nastasiasnk commited on
Commit
0b6419d
1 Parent(s): 4f0e724

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -20,7 +20,9 @@ def test(input_json):
20
  weights = inputs['input']["weights"]
21
 
22
  alpha = inputs['input']["alpha"]
 
23
  threshold = inputs['input']["threshold"]
 
24
 
25
  #print("Parsed input keys:", inputs.keys())
26
 
@@ -31,22 +33,24 @@ def test(input_json):
31
  #multiplier_series = pd.Series(float(inputs["a_list"]), index=inputs["dataframe"].index)
32
  #new_df["new column"] = float(inputs["dataframe"]).mul(multiplier_series, axis=0)
33
 
34
-
 
35
 
36
  """
37
- def computeAccessibility (DistanceMatrix,destinationWeights, alpha = 0.0038, dist_threshold = 600):
38
 
39
  decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
40
  subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=destinationWeights.columns)
41
  for col in destinationWeights.columns:
42
  subdomainsAccessibility[col] = (decay_factors * destinationWeights[col].values).sum(axis=1)
43
 
44
- subdomainsAccessibility.drop(columns='commercial', inplace=True)
45
  return subdomainsAccessibility
46
  """
47
 
48
- #df = pd.DataFrame(matrix).T
49
-
 
50
 
51
  # Prepare the output
52
  output = {
 
20
  weights = inputs['input']["weights"]
21
 
22
  alpha = inputs['input']["alpha"]
23
+ alpha = float(alpha)
24
  threshold = inputs['input']["threshold"]
25
+ threshold = float(threshold)
26
 
27
  #print("Parsed input keys:", inputs.keys())
28
 
 
33
  #multiplier_series = pd.Series(float(inputs["a_list"]), index=inputs["dataframe"].index)
34
  #new_df["new column"] = float(inputs["dataframe"]).mul(multiplier_series, axis=0)
35
 
36
+ #df_matrix = pd.DataFrame(matrix).T
37
+ #df_weights = pd.DataFrame(weights).T
38
 
39
  """
40
+ def computeAccessibility (DistanceMatrix,destinationWeights, alpha = 0.0038, threshold = 600):
41
 
42
  decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold)
43
  subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=destinationWeights.columns)
44
  for col in destinationWeights.columns:
45
  subdomainsAccessibility[col] = (decay_factors * destinationWeights[col].values).sum(axis=1)
46
 
47
+ #subdomainsAccessibility.drop(columns='commercial', inplace=True)
48
  return subdomainsAccessibility
49
  """
50
 
51
+ #subdomainsAccessibility = computeAccessibility(df_matrix,df_weights,alpha,threshold)
52
+
53
+ #subdomainsAccessibility_dict = subdomainsAccessibility.to_dict('index')
54
 
55
  # Prepare the output
56
  output = {