Spaces:
Sleeping
Sleeping
nastasiasnk
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -97,7 +97,8 @@ else:
|
|
97 |
df_lu_filtered = df_lu[lu_columns].loc[mask_connected]
|
98 |
df_lu_filtered.columns = [col.replace('lu+', '') for col in df_lu_filtered.columns]
|
99 |
df_lu_filtered.columns = [col.replace('ASSETS+', '') for col in df_lu_filtered.columns]
|
100 |
-
|
|
|
101 |
df_lu_filtered = df_lu_filtered.apply(pd.to_numeric, errors='coerce')
|
102 |
df_lu_filtered = df_lu_filtered.astype(int)
|
103 |
df_lu_filtered = df_lu_filtered.T.groupby(level=0).sum().T
|
@@ -126,10 +127,12 @@ def test(input_json):
|
|
126 |
|
127 |
dfLanduses = pd.DataFrame(landuses).T
|
128 |
dfLanduses = dfLanduses.apply(pd.to_numeric, errors='coerce')
|
|
|
129 |
dfLanduses = dfLanduses.round(0).astype(int)
|
130 |
|
131 |
dfMatrix = pd.DataFrame(matrix).T
|
132 |
dfMatrix = dfMatrix.apply(pd.to_numeric, errors='coerce')
|
|
|
133 |
dfMatrix = dfMatrix.round(0).astype(int)
|
134 |
else:
|
135 |
dfLanduses = df_lu_filtered.copy()
|
|
|
97 |
df_lu_filtered = df_lu[lu_columns].loc[mask_connected]
|
98 |
df_lu_filtered.columns = [col.replace('lu+', '') for col in df_lu_filtered.columns]
|
99 |
df_lu_filtered.columns = [col.replace('ASSETS+', '') for col in df_lu_filtered.columns]
|
100 |
+
|
101 |
+
df_lu_filtered = df_lu_filtered.replace([np.inf, -np.inf], 10000).fillna(0)
|
102 |
df_lu_filtered = df_lu_filtered.apply(pd.to_numeric, errors='coerce')
|
103 |
df_lu_filtered = df_lu_filtered.astype(int)
|
104 |
df_lu_filtered = df_lu_filtered.T.groupby(level=0).sum().T
|
|
|
127 |
|
128 |
dfLanduses = pd.DataFrame(landuses).T
|
129 |
dfLanduses = dfLanduses.apply(pd.to_numeric, errors='coerce')
|
130 |
+
dfLanduses = dfLanduses.replace([np.inf, -np.inf], 0).fillna(0)
|
131 |
dfLanduses = dfLanduses.round(0).astype(int)
|
132 |
|
133 |
dfMatrix = pd.DataFrame(matrix).T
|
134 |
dfMatrix = dfMatrix.apply(pd.to_numeric, errors='coerce')
|
135 |
+
dfMatrix = dfMatrix.replace([np.inf, -np.inf], 10000).fillna(0)
|
136 |
dfMatrix = dfMatrix.round(0).astype(int)
|
137 |
else:
|
138 |
dfLanduses = df_lu_filtered.copy()
|