Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import json | |
from io import StringIO | |
from collections import OrderedDict | |
import os | |
# ---------------------- Accessing data from Notion ---------------------- # | |
from notion_client import Client as client_notion | |
from config import landuseDatabaseId , subdomainAttributesDatabaseId | |
from imports_utils import fetch_all_database_pages | |
from imports_utils import get_property_value | |
from imports_utils import notion | |
from config import landuseColumnName | |
from config import subdomainColumnName | |
from config import sqmPerEmployeeColumnName | |
from config import thresholdsColumnName | |
from config import maxPointsColumnName | |
from config import domainColumnName | |
#from imports_utils import fetchDomainMapper | |
#from imports_utils import fetchSubdomainMapper | |
from imports_utils import notionToken | |
from config import useNotionData | |
if notionToken is None: | |
raise Exception("Notion token not found. Please check the environment variables.") | |
else: | |
print("Notion token found successfully!") | |
""" | |
landuse_attributes = fetch_all_database_pages(notion, landuseDatabaseId) | |
livability_attributes = fetch_all_database_pages(notion, subdomainAttributesDatabaseId) | |
landuseMapperDict = fetchDomainMapper (landuse_attributes) | |
livabilityMapperDict = fetchSubdomainMapper (livability_attributes) | |
""" | |
if useNotionData: | |
landuseMapperDict, livabilityMapperDict = getDataFromNotion( | |
notion=notion, | |
notionToken=notionToken, | |
landuseDatabaseID=landuseDatabaseId, | |
subdomainDatabaseID=subdomainAttributesDatabaseId | |
) | |
# ---------------------- Accessing data from Speckle ---------------------- # | |
from specklepy.api.client import SpeckleClient | |
from specklepy.api.credentials import get_default_account, get_local_accounts | |
from specklepy.transports.server import ServerTransport | |
from specklepy.api import operations | |
from specklepy.objects.geometry import Polyline, Point | |
from specklepy.objects import Base | |
#import imports_utils | |
import speckle_utils | |
import data_utils | |
from config import landuseDatabaseId , streamId, dmBranchName, dmCommitId, luBranchName, luCommitId, distanceMatrixActivityNodes | |
from imports_utils import speckleToken | |
#from imports_utils import fetchDistanceMatrices | |
from config import useSpeckleData | |
from imports_utils import getDataFromSpeckle | |
if speckleToken is None: | |
raise Exception("Speckle token not found") | |
else: | |
print("Speckle token found successfully!") | |
if useSpeckleData == True: | |
CLIENT = SpeckleClient(host="https://speckle.xyz/") | |
account = get_default_account() | |
CLIENT.authenticate_with_token(token=speckleToken) | |
landuses, matrices = getDataFromSpeckle(speckleClient = CLIENT, streamID=streamId,matrixBranchName=dmBranchName, landuseBranchName=luBranchName) | |
#streamDistanceMatrices = speckle_utils.getSpeckleStream(streamId,dmBranchName,CLIENT, dmCommitId) | |
#matrices = fetchDistanceMatrices (streamDistanceMatrices) | |
#streamLanduses = speckle_utils.getSpeckleStream(streamId,luBranchName,CLIENT, luCommitId) | |
#streamData = streamLanduses["@Data"]["@{0}"] | |
#df_speckle_lu = speckle_utils.get_dataframe(streamData, return_original_df=False) | |
#df_lu = df_speckle_lu.copy() | |
#df_lu = df_lu.astype(str) | |
#df_lu = df_lu.set_index("uuid", drop=False) # variable, uuid as default | |
df_dm = matrices[distanceMatrixActivityNodes] | |
df_dm_dict = df_dm.to_dict('index') | |
# Replace infinity with 10000 and NaN values with 0, then convert to integers | |
df_dm = df_dm.replace([np.inf, -np.inf], 10000).fillna(0) | |
df_dm = df_dm.apply(pd.to_numeric, errors='coerce') | |
df_dm = df_dm.round(0).astype(int) | |
mask_connected = df_dm.index.tolist() | |
""" | |
lu_columns = [] # provided by user? or prefix | |
for name in df_lu.columns: | |
if name.startswith("lu+"): | |
lu_columns.append(name) | |
""" | |
df_lu = landuses.loc[mask_connected] | |
#df_lu_filtered.columns = [col.replace('lu+', '') for col in df_lu_filtered.columns] | |
mergeAssetNonAssetLanduse = True | |
if mergeAssetNonAssetLanduse: | |
df_lu.columns = [col.replace('ASSETS+', '') for col in df_lu.columns] | |
df_lu = df_lu.replace([np.inf, -np.inf], 10000).fillna(0) | |
df_lu = df_lu.apply(pd.to_numeric, errors='coerce') | |
df_lu = df_lu.astype(int) | |
df_lu = df_lu.T.groupby(level=0).sum().T | |
def test(input_json): | |
print("Received input") | |
# Parse the input JSON string | |
try: | |
inputs = json.loads(input_json) | |
except json.JSONDecodeError: | |
inputs = json.loads(input_json.replace("'", '"')) | |
# ------------------------- Accessing input data from Grasshopper ------------------------- # | |
useGrasshopperData = inputs['input']["useGrasshopperData"] # fetch grasshoper data or not | |
if useGrasshopperData == "True": # grasshopper input | |
matrix = inputs['input']["matrix"] | |
landuses = inputs['input']["landuse_areas"] # fetch grasshoper data or not | |
dfLanduses = pd.DataFrame(landuses).T | |
dfLanduses = dfLanduses.apply(pd.to_numeric, errors='coerce') | |
dfLanduses = dfLanduses.replace([np.inf, -np.inf], 0).fillna(0) # cleaning function? | |
dfLanduses = dfLanduses.round(0).astype(int) | |
dfMatrix = pd.DataFrame(matrix).T | |
dfMatrix = dfMatrix.apply(pd.to_numeric, errors='coerce') | |
dfMatrix = dfMatrix.replace([np.inf, -np.inf], 10000).fillna(0) | |
dfMatrix = dfMatrix.round(0).astype(int) | |
else: | |
dfLanduses = df_lu.copy() # fetch speckl data or not | |
dfMatrix = df_dm.copy() | |
df_lu_filtered_dict = dfLanduses.to_dict('index') | |
dm_dictionary = dfMatrix.to_dict('index') | |
attributeMapperDict_gh = inputs['input']["attributeMapperDict"] | |
landuseMapperDict_gh = inputs['input']["landuseMapperDict"] # if fetch notion data or not, def | |
from config import alpha as alphaDefault | |
from config import threshold as thresholdDefault | |
if not inputs['input']["alpha"]: | |
alpha = alphaDefault | |
else: | |
alpha = inputs['input']["alpha"] | |
alpha = float(alpha) | |
if not inputs['input']["threshold"]: | |
threshold = thresholdDefault | |
else: | |
threshold = inputs['input']["threshold"] | |
threshold = float(threshold) | |
""" | |
valid_indexes = [idx for idx in mask_connected if idx in dfLanduses.index] | |
# Identify and report missing indexes | |
missing_indexes = set(mask_connected) - set(valid_indexes) | |
if missing_indexes: | |
print(f"Error: The following indexes were not found in the DataFrame: {missing_indexes}, length: {len(missing_indexes)}") | |
# Apply the filtered mask | |
dfLanduses_filtered = dfLanduses.loc[valid_indexes] | |
from imports_utils import findUniqueDomains | |
from imports_utils import findUniqueSubdomains | |
from imports_utils import landusesToSubdomains | |
from imports_utils import FindWorkplacesNumber | |
from imports_utils import computeAccessibility | |
from imports_utils import computeAccessibility_pointOfInterest | |
from imports_utils import remap | |
from imports_utils import accessibilityToLivability | |
domainsUnique = findUniqueDomains(livabilityMapperDict) | |
subdomainsUnique = findUniqueSubdomains(landuseMapperDict) | |
LivabilitySubdomainsWeights = landusesToSubdomains(dfMatrix,df_lu_filtered,landuseMapperDict,subdomainsUnique) | |
WorkplacesNumber = FindWorkplacesNumber(dfMatrix,livabilityMapperDict,LivabilitySubdomainsWeights,subdomainsUnique) | |
# prepare an input weights dataframe for the parameter LivabilitySubdomainsInputs | |
LivabilitySubdomainsInputs =pd.concat([LivabilitySubdomainsWeights, WorkplacesNumber], axis=1) | |
subdomainsAccessibility = computeAccessibility(dfMatrix,LivabilitySubdomainsInputs,alpha,threshold) | |
#artAccessibility = computeAccessibility_pointOfInterest(df_art_matrix,'ART',alpha,threshold) | |
#gmtAccessibility = computeAccessibility_pointOfInterest(df_gmt_matrix,'GMT+HSR',alpha,threshold) | |
#AccessibilityInputs = pd.concat([subdomainsAccessibility, artAccessibility,gmtAccessibility], axis=1) | |
livability = accessibilityToLivability(dfMatrix,subdomainsAccessibility,livabilityMapperDict,domainsUnique) | |
livability_dictionary = livability.to_dict('index') | |
LivabilitySubdomainsInputs_dictionary = LivabilitySubdomainsInputs.to_dict('index') | |
subdomainsAccessibility_dictionary = subdomainsAccessibility.to_dict('index') | |
LivabilitySubdomainsWeights_dictionary = LivabilitySubdomainsWeights.to_dict('index') | |
""" | |
# Prepare the output | |
output = { | |
#"subdomainsAccessibility_dictionary": subdomainsAccessibility_dictionary, | |
#"livability_dictionary": livability_dictionary, | |
#"subdomainsWeights_dictionary": LivabilitySubdomainsInputs_dictionary, | |
#"luDomainMapper": landuseMapperDict, | |
#"attributeMapper": livabilityMapperDict, | |
"mask_connected": mask_connected, | |
"dm_an": df_dm_dict, | |
"landuses":df_lu_filtered_dict, | |
"constants": [alpha, threshold] | |
} | |
return json.dumps(output) | |
# Define the Gradio interface with a single JSON input | |
iface = gr.Interface( | |
fn=test, | |
inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."), | |
outputs=gr.JSON(label="Output JSON"), | |
title="testspace" | |
) | |
iface.launch() |