Spaces:
Sleeping
Sleeping
narinsak unawong
commited on
Upload app-penguins.py
Browse files- app-penguins.py +81 -0
app-penguins.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.model_selection import train_test_split
|
4 |
+
from sklearn.pipeline import Pipeline
|
5 |
+
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
6 |
+
from sklearn.compose import ColumnTransformer
|
7 |
+
from sklearn.neighbors import KNeighborsClassifier
|
8 |
+
from sklearn.metrics import accuracy_score
|
9 |
+
|
10 |
+
# Load your data (replace with your actual data loading)
|
11 |
+
penguins = pd.read_csv('penguins_lter.csv')
|
12 |
+
|
13 |
+
# Data Cleaning (same as your existing code)
|
14 |
+
penguins_cleaned = penguins.dropna()
|
15 |
+
penguins_cleaned = penguins_cleaned.drop_duplicates()
|
16 |
+
|
17 |
+
# Fill missing values (same as your existing code)
|
18 |
+
numerical_cols = penguins.select_dtypes(include=['number']).columns
|
19 |
+
penguins[numerical_cols] = penguins[numerical_cols].fillna(penguins[numerical_cols].mean())
|
20 |
+
categorical_cols = penguins.select_dtypes(include=['object']).columns
|
21 |
+
penguins[categorical_cols] = penguins[categorical_cols].fillna(penguins[categorical_cols].mode().iloc[0])
|
22 |
+
|
23 |
+
|
24 |
+
# Feature Engineering and Model Training (same as your existing code)
|
25 |
+
X = penguins.drop('Species', axis=1)
|
26 |
+
y = penguins['Species']
|
27 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
28 |
+
|
29 |
+
numerical_features = ['Culmen Length (mm)', 'Culmen Depth (mm)', 'Flipper Length (mm)', 'Body Mass (g)']
|
30 |
+
categorical_features = ['Island', 'Sex']
|
31 |
+
|
32 |
+
numerical_transformer = Pipeline(steps=[('scaler', StandardScaler())])
|
33 |
+
categorical_transformer = Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore'))])
|
34 |
+
|
35 |
+
preprocessor = ColumnTransformer(
|
36 |
+
transformers=[
|
37 |
+
('num', numerical_transformer, numerical_features),
|
38 |
+
('cat', categorical_transformer, categorical_features)
|
39 |
+
])
|
40 |
+
|
41 |
+
pipeline = Pipeline(steps=[
|
42 |
+
('preprocessor', preprocessor),
|
43 |
+
('classifier', KNeighborsClassifier())
|
44 |
+
])
|
45 |
+
|
46 |
+
pipeline.fit(X_train, y_train)
|
47 |
+
y_pred = pipeline.predict(X_test)
|
48 |
+
accuracy = accuracy_score(y_test, y_pred)
|
49 |
+
|
50 |
+
# Streamlit App
|
51 |
+
st.title("Penguin Species Classification")
|
52 |
+
|
53 |
+
st.write("This app predicts the species of a penguin based on its features.")
|
54 |
+
|
55 |
+
# Display the accuracy
|
56 |
+
st.write(f"Model Accuracy: {accuracy}")
|
57 |
+
|
58 |
+
# Input features for prediction
|
59 |
+
culmen_length = st.number_input("Culmen Length (mm)", min_value=0.0)
|
60 |
+
culmen_depth = st.number_input("Culmen Depth (mm)", min_value=0.0)
|
61 |
+
flipper_length = st.number_input("Flipper Length (mm)", min_value=0.0)
|
62 |
+
body_mass = st.number_input("Body Mass (g)", min_value=0.0)
|
63 |
+
island = st.selectbox("Island", penguins['Island'].unique())
|
64 |
+
sex = st.selectbox("Sex", penguins['Sex'].unique())
|
65 |
+
|
66 |
+
|
67 |
+
# Create a DataFrame for prediction
|
68 |
+
new_penguin = pd.DataFrame({
|
69 |
+
'Culmen Length (mm)': [culmen_length],
|
70 |
+
'Culmen Depth (mm)': [culmen_depth],
|
71 |
+
'Flipper Length (mm)': [flipper_length],
|
72 |
+
'Body Mass (g)': [body_mass],
|
73 |
+
'Island': [island],
|
74 |
+
'Sex': [sex]
|
75 |
+
})
|
76 |
+
|
77 |
+
|
78 |
+
# Make prediction
|
79 |
+
if st.button("Predict Species"):
|
80 |
+
prediction = pipeline.predict(new_penguin)
|
81 |
+
st.write(f"Predicted Species: {prediction[0]}")
|