votecount-ml-be / main.py
napatswift
Update device
48e6d08
raw
history blame
1.44 kB
from mmocr.ocr import MMOCR
import gradio as gr
import cv2
import sys
import torch
device = 'gpu' if torch.cuda.is_available() else 'cpu'
ocr = MMOCR(det_config='model/det/config.py',
det_ckpt='model/det/model.pth',
recog_config='model/recog/config.py',
recog_ckpt='model/det/model.pth',
device='cpu')
def get_rec(points):
xs = []
ys = []
for ix, iv in enumerate(points):
if ix % 2:
ys.append(iv)
else:
xs.append(iv)
return (min(xs), min(ys)), (max(xs), max(ys))
def predict(image_input, score_threshold):
draw_img = image_input.copy()
print('image shape', image_input.shape, file=sys.stderr)
try:
output = ocr.readtext(image_input)
except:
output = dict(det_polygons=[], det_scores=[])
polygons = output['det_polygons']
scores = output['det_scores']
for polygon, score in zip(polygons, scores):
if score < score_threshold:
continue
p0, p1 = get_rec([int(i) for i in polygon])
draw_img = cv2.rectangle(draw_img, p0, p1, (255,0,0), 2)
return draw_img, output
def run():
demo = gr.Interface(
fn=predict,
inputs=[gr.components.Image(), gr.Slider(0, 1, 0.8)],
outputs=[gr.components.Image(), gr.JSON()],
)
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run()