Spaces:
Runtime error
Runtime error
napatswift
commited on
Commit
·
b7f49b8
1
Parent(s):
15e4f3a
Init project
Browse files- Dockerfile +31 -0
- main.py +65 -0
- model/table-det/config.py +318 -0
- model/table-det/model.pth +3 -0
- requirements.txt +4 -0
Dockerfile
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
|
6 |
+
|
7 |
+
COPY ./requirements.txt /code/requirements.txt
|
8 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
9 |
+
|
10 |
+
RUN pip install -U openmim
|
11 |
+
RUN mim install mmengine
|
12 |
+
RUN mim install mmcv
|
13 |
+
RUN mim install mmdet
|
14 |
+
RUN mim install mmocr
|
15 |
+
|
16 |
+
# Set up a new user named "user" with user ID 1000
|
17 |
+
RUN useradd -m -u 1000 user
|
18 |
+
# Switch to the "user" user
|
19 |
+
USER user
|
20 |
+
# Set home to the user's home directory
|
21 |
+
ENV HOME=/home/user \
|
22 |
+
PATH=/home/user/.local/bin:$PATH
|
23 |
+
|
24 |
+
# Set the working directory to the user's home directory
|
25 |
+
WORKDIR $HOME/app
|
26 |
+
|
27 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
28 |
+
COPY --chown=user . $HOME/app
|
29 |
+
RUN ls
|
30 |
+
|
31 |
+
CMD ["python", "main.py"]
|
main.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mmdet.apis import init_detector, inference_detector
|
2 |
+
import gradio as gr
|
3 |
+
import cv2
|
4 |
+
import sys
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
print('Loading model...')
|
9 |
+
device = 'gpu' if torch.cuda.is_available() else 'cpu'
|
10 |
+
|
11 |
+
table_det = init_detector('model/table-det/config.py',
|
12 |
+
'model/table-det/model.pth', device=device)
|
13 |
+
def get_corners(points):
|
14 |
+
"""
|
15 |
+
Returns the top-left, top-right, bottom-right, and bottom-left corners
|
16 |
+
of a rectangle defined by a list of four points in the form of tuples.
|
17 |
+
"""
|
18 |
+
# Sort points by x-coordinate
|
19 |
+
sorted_points = sorted(points, key=lambda p: p[0])
|
20 |
+
|
21 |
+
# Split sorted points into left and right halves
|
22 |
+
left_points = sorted_points[:2]
|
23 |
+
right_points = sorted_points[2:]
|
24 |
+
|
25 |
+
# Sort left and right points by y-coordinate
|
26 |
+
left_points = sorted(left_points, key=lambda p: p[1])
|
27 |
+
right_points = sorted(right_points, key=lambda p: p[1], reverse=True)
|
28 |
+
|
29 |
+
# Return corners in order: top-left, top-right, bottom-right, bottom-left
|
30 |
+
return (left_points[0], right_points[0], right_points[1], left_points[1])
|
31 |
+
|
32 |
+
def funct(mask_array):
|
33 |
+
table_images = []
|
34 |
+
table_bboxes = []
|
35 |
+
contours, hierarchy = cv2.findContours(mask_array, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
36 |
+
for cnt in contours:
|
37 |
+
rect = cv2.minAreaRect(cnt)
|
38 |
+
box = cv2.boxPoints(rect)
|
39 |
+
epsilon = cv2.arcLength(cnt,True)
|
40 |
+
approx = cv2.approxPolyDP(cnt, 0.02*epsilon, True)
|
41 |
+
points = np.squeeze(approx)
|
42 |
+
if len(points) != 4:
|
43 |
+
points = box
|
44 |
+
tl, br, bl, tr = get_corners(points.tolist())
|
45 |
+
table_bboxes.append([tl, tr, br, bl])
|
46 |
+
return table_bboxes
|
47 |
+
|
48 |
+
|
49 |
+
def predict(image_input):
|
50 |
+
results = inference_detector(table_det, image_input)
|
51 |
+
print(results)
|
52 |
+
return {'message': 'success'}
|
53 |
+
|
54 |
+
def run():
|
55 |
+
demo = gr.Interface(
|
56 |
+
fn=predict,
|
57 |
+
inputs=gr.components.Image(),
|
58 |
+
outputs=gr.JSON(),
|
59 |
+
)
|
60 |
+
|
61 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
run()
|
model/table-det/config.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
type='MaskRCNN',
|
3 |
+
data_preprocessor=dict(
|
4 |
+
type='DetDataPreprocessor',
|
5 |
+
mean=[123.675, 116.28, 103.53],
|
6 |
+
std=[58.395, 57.12, 57.375],
|
7 |
+
bgr_to_rgb=True,
|
8 |
+
pad_mask=True,
|
9 |
+
pad_size_divisor=32),
|
10 |
+
backbone=dict(
|
11 |
+
type='ResNet',
|
12 |
+
depth=50,
|
13 |
+
num_stages=4,
|
14 |
+
out_indices=(0, 1, 2, 3),
|
15 |
+
frozen_stages=1,
|
16 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
17 |
+
norm_eval=True,
|
18 |
+
style='pytorch',
|
19 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
20 |
+
neck=dict(
|
21 |
+
type='FPN',
|
22 |
+
in_channels=[256, 512, 1024, 2048],
|
23 |
+
out_channels=256,
|
24 |
+
num_outs=5),
|
25 |
+
rpn_head=dict(
|
26 |
+
type='RPNHead',
|
27 |
+
in_channels=256,
|
28 |
+
feat_channels=256,
|
29 |
+
anchor_generator=dict(
|
30 |
+
type='AnchorGenerator',
|
31 |
+
scales=[8],
|
32 |
+
ratios=[0.5, 1.0, 2.0],
|
33 |
+
strides=[4, 8, 16, 32, 64]),
|
34 |
+
bbox_coder=dict(
|
35 |
+
type='DeltaXYWHBBoxCoder',
|
36 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
37 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
38 |
+
loss_cls=dict(
|
39 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
40 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
41 |
+
roi_head=dict(
|
42 |
+
type='StandardRoIHead',
|
43 |
+
bbox_roi_extractor=dict(
|
44 |
+
type='SingleRoIExtractor',
|
45 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
46 |
+
out_channels=256,
|
47 |
+
featmap_strides=[4, 8, 16, 32]),
|
48 |
+
bbox_head=dict(
|
49 |
+
type='Shared2FCBBoxHead',
|
50 |
+
in_channels=256,
|
51 |
+
fc_out_channels=1024,
|
52 |
+
roi_feat_size=7,
|
53 |
+
num_classes=1,
|
54 |
+
bbox_coder=dict(
|
55 |
+
type='DeltaXYWHBBoxCoder',
|
56 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
57 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
58 |
+
reg_class_agnostic=False,
|
59 |
+
loss_cls=dict(
|
60 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
61 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
62 |
+
mask_roi_extractor=dict(
|
63 |
+
type='SingleRoIExtractor',
|
64 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
65 |
+
out_channels=256,
|
66 |
+
featmap_strides=[4, 8, 16, 32]),
|
67 |
+
mask_head=dict(
|
68 |
+
type='FCNMaskHead',
|
69 |
+
num_convs=4,
|
70 |
+
in_channels=256,
|
71 |
+
conv_out_channels=256,
|
72 |
+
num_classes=1,
|
73 |
+
loss_mask=dict(
|
74 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
75 |
+
train_cfg=dict(
|
76 |
+
rpn=dict(
|
77 |
+
assigner=dict(
|
78 |
+
type='MaxIoUAssigner',
|
79 |
+
pos_iou_thr=0.7,
|
80 |
+
neg_iou_thr=0.3,
|
81 |
+
min_pos_iou=0.3,
|
82 |
+
match_low_quality=True,
|
83 |
+
ignore_iof_thr=-1),
|
84 |
+
sampler=dict(
|
85 |
+
type='RandomSampler',
|
86 |
+
num=256,
|
87 |
+
pos_fraction=0.5,
|
88 |
+
neg_pos_ub=-1,
|
89 |
+
add_gt_as_proposals=False),
|
90 |
+
allowed_border=-1,
|
91 |
+
pos_weight=-1,
|
92 |
+
debug=False),
|
93 |
+
rpn_proposal=dict(
|
94 |
+
nms_pre=2000,
|
95 |
+
max_per_img=1000,
|
96 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
97 |
+
min_bbox_size=0),
|
98 |
+
rcnn=dict(
|
99 |
+
assigner=dict(
|
100 |
+
type='MaxIoUAssigner',
|
101 |
+
pos_iou_thr=0.5,
|
102 |
+
neg_iou_thr=0.5,
|
103 |
+
min_pos_iou=0.5,
|
104 |
+
match_low_quality=True,
|
105 |
+
ignore_iof_thr=-1),
|
106 |
+
sampler=dict(
|
107 |
+
type='RandomSampler',
|
108 |
+
num=512,
|
109 |
+
pos_fraction=0.25,
|
110 |
+
neg_pos_ub=-1,
|
111 |
+
add_gt_as_proposals=True),
|
112 |
+
mask_size=28,
|
113 |
+
pos_weight=-1,
|
114 |
+
debug=False)),
|
115 |
+
test_cfg=dict(
|
116 |
+
rpn=dict(
|
117 |
+
nms_pre=1000,
|
118 |
+
max_per_img=1000,
|
119 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
120 |
+
min_bbox_size=0),
|
121 |
+
rcnn=dict(
|
122 |
+
score_thr=0.05,
|
123 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
124 |
+
max_per_img=100,
|
125 |
+
mask_thr_binary=0.5)))
|
126 |
+
backend_args = None
|
127 |
+
train_pipeline = [
|
128 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
129 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
130 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
131 |
+
dict(type='Rotate', level=10),
|
132 |
+
dict(type='RandomFlip', prob=0.5),
|
133 |
+
dict(type='PackDetInputs')
|
134 |
+
]
|
135 |
+
test_pipeline = [
|
136 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
137 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
138 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
139 |
+
dict(
|
140 |
+
type='PackDetInputs',
|
141 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
142 |
+
'scale_factor'))
|
143 |
+
]
|
144 |
+
data_root = 'data/table-det-elect66/'
|
145 |
+
metainfo = dict(classes=('Table', ), palette=[(220, 20, 60)])
|
146 |
+
dataset_elect66 = dict(
|
147 |
+
type='CocoDataset',
|
148 |
+
data_root='data/table-det-elect66/',
|
149 |
+
ann_file='result.json',
|
150 |
+
data_prefix=dict(img=''),
|
151 |
+
metainfo=dict(classes=('Table', ), palette=[(220, 20, 60)]),
|
152 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
153 |
+
pipeline=[
|
154 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
155 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
156 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
157 |
+
dict(type='Rotate', level=10),
|
158 |
+
dict(type='RandomFlip', prob=0.5),
|
159 |
+
dict(type='PackDetInputs')
|
160 |
+
])
|
161 |
+
dataset_vote62 = dict(
|
162 |
+
type='CocoDataset',
|
163 |
+
data_root='data/table-det-740/',
|
164 |
+
ann_file='train_coco.json',
|
165 |
+
data_prefix=dict(img=''),
|
166 |
+
metainfo=dict(classes=('Table', ), palette=[(220, 20, 60)]),
|
167 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
168 |
+
pipeline=[
|
169 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
170 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
171 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
172 |
+
dict(type='Rotate', level=10),
|
173 |
+
dict(type='RandomFlip', prob=0.5),
|
174 |
+
dict(type='PackDetInputs')
|
175 |
+
])
|
176 |
+
train_dataloader = dict(
|
177 |
+
batch_size=2,
|
178 |
+
num_workers=2,
|
179 |
+
persistent_workers=True,
|
180 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
181 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
182 |
+
dataset=dict(
|
183 |
+
type='ConcatDataset',
|
184 |
+
datasets=[
|
185 |
+
dict(
|
186 |
+
type='CocoDataset',
|
187 |
+
data_root='data/table-det-elect66/',
|
188 |
+
ann_file='result.json',
|
189 |
+
data_prefix=dict(img=''),
|
190 |
+
metainfo=dict(classes=('Table', ), palette=[(220, 20, 60)]),
|
191 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
192 |
+
pipeline=[
|
193 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
194 |
+
dict(
|
195 |
+
type='LoadAnnotations', with_bbox=True,
|
196 |
+
with_mask=True),
|
197 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
198 |
+
dict(type='Rotate', level=10),
|
199 |
+
dict(type='RandomFlip', prob=0.5),
|
200 |
+
dict(type='PackDetInputs')
|
201 |
+
]),
|
202 |
+
dict(
|
203 |
+
type='CocoDataset',
|
204 |
+
data_root='data/table-det-740/',
|
205 |
+
ann_file='train_coco.json',
|
206 |
+
data_prefix=dict(img=''),
|
207 |
+
metainfo=dict(classes=('Table', ), palette=[(220, 20, 60)]),
|
208 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
209 |
+
pipeline=[
|
210 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
211 |
+
dict(
|
212 |
+
type='LoadAnnotations', with_bbox=True,
|
213 |
+
with_mask=True),
|
214 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
215 |
+
dict(type='Rotate', level=10),
|
216 |
+
dict(type='RandomFlip', prob=0.5),
|
217 |
+
dict(type='PackDetInputs')
|
218 |
+
])
|
219 |
+
]))
|
220 |
+
val_dataloader = dict(
|
221 |
+
batch_size=1,
|
222 |
+
num_workers=2,
|
223 |
+
persistent_workers=True,
|
224 |
+
drop_last=False,
|
225 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
226 |
+
dataset=dict(
|
227 |
+
type='CocoDataset',
|
228 |
+
data_root='data/table-det-elect66/',
|
229 |
+
ann_file='result.json',
|
230 |
+
data_prefix=dict(img=''),
|
231 |
+
test_mode=True,
|
232 |
+
pipeline=[
|
233 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
234 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
235 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
236 |
+
dict(
|
237 |
+
type='PackDetInputs',
|
238 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
239 |
+
'scale_factor'))
|
240 |
+
],
|
241 |
+
backend_args=None,
|
242 |
+
metainfo=dict(classes=('Table', ), palette=[(220, 20, 60)])))
|
243 |
+
test_dataloader = dict(
|
244 |
+
batch_size=1,
|
245 |
+
num_workers=2,
|
246 |
+
persistent_workers=True,
|
247 |
+
drop_last=False,
|
248 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
249 |
+
dataset=dict(
|
250 |
+
type='CocoDataset',
|
251 |
+
data_root='data/table-det-elect66/',
|
252 |
+
ann_file='result.json',
|
253 |
+
data_prefix=dict(img=''),
|
254 |
+
test_mode=True,
|
255 |
+
pipeline=[
|
256 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
257 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
258 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
259 |
+
dict(
|
260 |
+
type='PackDetInputs',
|
261 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
262 |
+
'scale_factor'))
|
263 |
+
],
|
264 |
+
backend_args=None,
|
265 |
+
metainfo=dict(classes=('Table', ), palette=[(220, 20, 60)])))
|
266 |
+
val_evaluator = dict(
|
267 |
+
type='CocoMetric',
|
268 |
+
ann_file='data/table-det-elect66/result.json',
|
269 |
+
metric=['bbox', 'segm'],
|
270 |
+
format_only=False,
|
271 |
+
backend_args=None)
|
272 |
+
test_evaluator = dict(
|
273 |
+
type='CocoMetric',
|
274 |
+
ann_file='data/table-det-elect66/result.json',
|
275 |
+
metric=['bbox', 'segm'],
|
276 |
+
format_only=False,
|
277 |
+
backend_args=None)
|
278 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=10, val_interval=5)
|
279 |
+
val_cfg = dict(type='ValLoop')
|
280 |
+
test_cfg = dict(type='TestLoop')
|
281 |
+
param_scheduler = [
|
282 |
+
dict(
|
283 |
+
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
|
284 |
+
dict(
|
285 |
+
type='MultiStepLR',
|
286 |
+
begin=0,
|
287 |
+
end=12,
|
288 |
+
by_epoch=True,
|
289 |
+
milestones=[8, 11],
|
290 |
+
gamma=0.1)
|
291 |
+
]
|
292 |
+
optim_wrapper = dict(
|
293 |
+
type='OptimWrapper',
|
294 |
+
optimizer=dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001))
|
295 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
296 |
+
default_scope = 'mmdet'
|
297 |
+
default_hooks = dict(
|
298 |
+
timer=dict(type='IterTimerHook'),
|
299 |
+
logger=dict(type='LoggerHook', interval=100),
|
300 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
301 |
+
checkpoint=dict(type='CheckpointHook', interval=5),
|
302 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
303 |
+
visualization=dict(type='DetVisualizationHook'))
|
304 |
+
env_cfg = dict(
|
305 |
+
cudnn_benchmark=False,
|
306 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
307 |
+
dist_cfg=dict(backend='nccl'))
|
308 |
+
vis_backends = [dict(type='LocalVisBackend')]
|
309 |
+
visualizer = dict(
|
310 |
+
type='DetLocalVisualizer',
|
311 |
+
vis_backends=[dict(type='LocalVisBackend')],
|
312 |
+
name='visualizer')
|
313 |
+
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
|
314 |
+
log_level = 'INFO'
|
315 |
+
load_from = None
|
316 |
+
resume = True
|
317 |
+
launcher = 'none'
|
318 |
+
work_dir = './work_dirs/vote-config'
|
model/table-det/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d42b7f3e8a73cfff6d126cacb5218b0547efba90e5ba89dc158097a0b15b9d33
|
3 |
+
size 351999009
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
gradio
|
3 |
+
torch
|
4 |
+
torchvision
|