naohiro701's picture
Update app.py
35fe794 verified
# app.py
import streamlit as st
from PIL import Image, ImageOps, ImageEnhance, ImageFilter, ImageDraw, ImageChops
import random
import os
import io
import time
import numpy as np
# Title
st.title("Unique Generative Photo Editor")
# Record the start time
start_time = time.time()
# Image Upload
uploaded_file = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display the uploaded image
input_image = Image.open(uploaded_file).convert("RGB")
st.image(input_image, caption='Uploaded Image', use_column_width=True)
# Get original image size
original_width, original_height = input_image.size
# Sidebar for parameter adjustments
st.sidebar.title("Parameter Adjustments")
# Image scale (size) adjustment
scale_factor = st.sidebar.slider("Image Scale (Size)", 0.1, 1.0, 1.0, 0.01)
new_width = int(original_width * scale_factor)
new_height = int(original_height * scale_factor)
input_image = input_image.resize((new_width, new_height), resample=Image.LANCZOS)
st.write(f"Resized Image: {input_image.size}")
# Contrast adjustment
contrast_factor = st.sidebar.slider("Contrast Strength", 0.5, 3.0, 1.5, 0.1)
# Brightness adjustment
brightness_factor = st.sidebar.slider("Brightness", 0.5, 3.0, 1.0, 0.1)
# Sharpness adjustment
sharpness_factor = st.sidebar.slider("Sharpness", 0.0, 5.0, 1.0, 0.1)
# Sepia depth
sepia_depth = st.sidebar.slider("Sepia Depth", 0, 100, 30, 1)
# Vignette effect strength
vignette_strength = st.sidebar.slider("Vignette Strength", 0.0, 1.0, 0.5, 0.01)
# Noise level
noise_level = st.sidebar.slider("Noise Level", 0, 100, 30, 1)
# Generate a unique seed
seed = random.randint(0, 2**32 - 1)
st.write(f"Unique Seed Value: {seed}")
# Seed file to record used seeds
seed_file = "used_seeds.txt"
# Load used seeds
if os.path.exists(seed_file):
with open(seed_file, 'r') as f:
used_seeds = set(int(line.strip()) for line in f)
else:
used_seeds = set()
if seed in used_seeds:
st.error("This seed value has already been used. Please try again.")
else:
# Save the seed value
with open(seed_file, 'a') as f:
f.write(f"{seed}\n")
# Image processing
with st.spinner('Processing image...'):
try:
def apply_unique_effect(image, seed, contrast_factor, brightness_factor, sharpness_factor,
sepia_depth, vignette_strength, noise_level):
# Set the seed values
np.random.seed(seed)
random.seed(seed)
# Step 1: Convert to grayscale
image = ImageOps.grayscale(image)
# Step 2: Adjust contrast
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(contrast_factor)
# Step 3: Adjust brightness
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(brightness_factor)
# Step 4: Adjust sharpness
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(sharpness_factor)
# Step 5: Apply sepia tone
sepia_image = np.array(image).astype(np.float64)
sepia_image = sepia_image / 255.0
sepia_filter = np.array([[1.0, 0.95, 0.82]]) # Sepia color
sepia_image = sepia_image[..., np.newaxis] * sepia_filter
sepia_image = np.clip(sepia_image * (1 + sepia_depth / 100), 0, 1)
sepia_image = (sepia_image * 255).astype(np.uint8)
image = Image.fromarray(sepia_image, mode='RGB')
# Step 6: Add vignette effect
width, height = image.size
x = np.linspace(-1, 1, width)
y = np.linspace(-1, 1, height)
xx, yy = np.meshgrid(x, y)
gradient = np.sqrt(xx**2 + yy**2)
mask = (1 - gradient / gradient.max())
mask = np.clip(mask, 0, 1)
mask = mask ** (vignette_strength * 10) # Adjust strength
alpha = (mask * 255).astype(np.uint8)
vignette = Image.fromarray(alpha, mode='L')
image.putalpha(vignette)
# Step 7: Add noise
noise_array = np.random.randint(0, noise_level, (height, width), dtype='uint8')
noise_image = Image.fromarray(noise_array, mode='L')
noise_image = noise_image.convert('RGBA')
# Combine image and noise
r, g, b, a = image.split()
noise_r, noise_g, noise_b, noise_a = noise_image.split()
r = ImageChops.add(r, noise_r)
g = ImageChops.add(g, noise_g)
b = ImageChops.add(b, noise_b)
image = Image.merge('RGBA', (r, g, b, a))
# Step 8: Remove alpha channel if necessary
image = image.convert("RGB")
# Check processing time
processing_time = time.time() - start_time
if processing_time > 30:
raise TimeoutError("Processing timed out. Please try again with a smaller image size.")
return image
# Apply the effect
output_image = apply_unique_effect(
input_image,
seed,
contrast_factor,
brightness_factor,
sharpness_factor,
sepia_depth,
vignette_strength,
noise_level
)
# Check total processing time
total_time = time.time() - start_time
st.write(f"Processing Time: {total_time:.2f} seconds")
st.image(output_image, caption='Transformed Image', use_column_width=True)
# Download button
buffered = io.BytesIO()
output_image.save(buffered, format="PNG")
img_data = buffered.getvalue()
st.download_button(
label="Download Image",
data=img_data,
file_name="transformed_image.png",
mime="image/png"
)
except TimeoutError as e:
st.error(str(e))
# Original Concept Explanation
markdown_text = """
This application allows you to apply unique, artistic effects to your images, emulating a vintage style. Each image transformation is guaranteed to be unique due to the use of a random seed, ensuring that the same effect cannot be reproduced.
## Features
- **Uniqueness Guaranteed:** Uses a random seed for each transformation, so every image is one-of-a-kind.
- **User Control:** Adjust various parameters like image scale, contrast, brightness, sharpness, sepia depth, vignette strength, and noise level to customize the effect.
- **Vintage Effects:** Emulates the ambiance of classic photography techniques through digital image processing.
## How to Use
1. **Upload an Image:** Select the image you want to transform.
2. **Adjust Parameters:** Use the sliders to fine-tune the effects to your liking.
3. **Unique Seed Generation:** A unique seed value is generated for each transformation to ensure uniqueness.
4. **Image Processing:** The app applies the effects based on your settings and the unique seed.
5. **View and Download:** Preview the transformed image and download it if you're satisfied.
## Notes
- The uniqueness of each image is based on the random seed and your chosen parameters.
- Images are processed locally and are not saved on the server.
- Experiment with different settings to create your own unique piece of art.
## Reference
[1] Chinatsu Ozawa, Tatsuya Minagawa, and Yoichi Ochiai. 2024. Can AI Generated Ambrotype Chain the Aura of Alternative Process? In *SIGGRAPH Asia 2024 Art Papers (SA Art Papers '24)*, December 03–06, 2024, Tokyo, Japan. ACM, New York, NY, USA, 13 Pages. [https://doi.org/10.1145/3680530.3695434](https://doi.org/10.1145/3680530.3695434)
"""
# Display the Markdown Explanation
st.markdown(markdown_text)