Spaces:
Sleeping
Sleeping
| # boids_streamlit_advanced.py | |
| import streamlit as st | |
| import numpy as np | |
| import plotly.graph_objects as go | |
| import time | |
| # Define the Boid class | |
| class Boid: | |
| def __init__(self, position, velocity): | |
| self.position = np.array(position, dtype='float64') | |
| self.velocity = np.array(velocity, dtype='float64') | |
| self.acceleration = np.zeros(2, dtype='float64') | |
| self.history = [] | |
| def update(self, boids, width, height, params): | |
| self.flock(boids, params) | |
| self.velocity += self.acceleration | |
| speed = np.linalg.norm(self.velocity) | |
| if speed > params['max_speed']: | |
| self.velocity = (self.velocity / speed) * params['max_speed'] | |
| self.position += self.velocity | |
| self.acceleration = np.zeros(2, dtype='float64') | |
| # Screen wrapping | |
| self.position[0] = self.position[0] % width | |
| self.position[1] = self.position[1] % height | |
| # Add current position to history | |
| if params['draw_trail']: | |
| self.history.append(self.position.copy()) | |
| if len(self.history) > params['max_history']: | |
| self.history.pop(0) | |
| def flock(self, boids, params): | |
| self.acceleration = np.zeros(2, dtype='float64') | |
| self.fly_towards_center(boids, params) | |
| self.avoid_others(boids, params) | |
| self.match_velocity(boids, params) | |
| self.limit_speed(params) | |
| self.avoid_boundaries(width=params['width'], height=params['height'], params=params) | |
| def fly_towards_center(self, boids, params): | |
| centering_factor = params['centering_factor'] | |
| center_x = 0.0 | |
| center_y = 0.0 | |
| num_neighbors = 0 | |
| for other in boids: | |
| if other is not self and self.distance(other) < params['visual_range']: | |
| center_x += other.position[0] | |
| center_y += other.position[1] | |
| num_neighbors += 1 | |
| if num_neighbors > 0: | |
| center_x /= num_neighbors | |
| center_y /= num_neighbors | |
| direction = np.array([center_x, center_y]) - self.position | |
| self.acceleration += centering_factor * direction | |
| def avoid_others(self, boids, params): | |
| min_distance = params['min_distance'] | |
| avoid_factor = params['avoid_factor'] | |
| move = np.zeros(2, dtype='float64') | |
| for other in boids: | |
| if other is not self and self.distance(other) < min_distance: | |
| move += self.position - other.position | |
| if np.linalg.norm(move) > 0: | |
| move = move / np.linalg.norm(move) * avoid_factor | |
| self.acceleration += move | |
| def match_velocity(self, boids, params): | |
| matching_factor = params['matching_factor'] | |
| avg_velocity = np.zeros(2, dtype='float64') | |
| num_neighbors = 0 | |
| for other in boids: | |
| if other is not self and self.distance(other) < params['visual_range']: | |
| avg_velocity += other.velocity | |
| num_neighbors += 1 | |
| if num_neighbors > 0: | |
| avg_velocity /= num_neighbors | |
| self.acceleration += matching_factor * (avg_velocity - self.velocity) | |
| def limit_speed(self, params): | |
| speed = np.linalg.norm(self.velocity) | |
| if speed > params['max_speed']: | |
| self.velocity = (self.velocity / speed) * params['max_speed'] | |
| def avoid_boundaries(self, width, height, params): | |
| margin = params['boundary_margin'] | |
| turn_factor = params['boundary_turn_factor'] | |
| if self.position[0] < margin: | |
| self.acceleration[0] += turn_factor | |
| elif self.position[0] > width - margin: | |
| self.acceleration[0] -= turn_factor | |
| if self.position[1] < margin: | |
| self.acceleration[1] += turn_factor | |
| elif self.position[1] > height - margin: | |
| self.acceleration[1] -= turn_factor | |
| def distance(self, other): | |
| return np.linalg.norm(self.position - other.position) | |
| # Simulation parameters | |
| params = { | |
| 'num_boids': 100, | |
| 'visual_range': 75.0, | |
| 'min_distance': 20.0, | |
| 'centering_factor': 0.005, | |
| 'avoid_factor': 0.05, | |
| 'matching_factor': 0.05, | |
| 'max_speed': 15.0, | |
| 'draw_trail': False, | |
| 'max_history': 50, | |
| 'width': 800, | |
| 'height': 600, | |
| 'boundary_margin': 100.0, | |
| 'boundary_turn_factor': 0.05 | |
| } | |
| # Streamlit sidebar for parameter adjustments | |
| st.sidebar.title("Boids Simulation Parameters") | |
| params['num_boids'] = st.sidebar.slider("Number of Boids", 10, 300, 100) | |
| params['visual_range'] = st.sidebar.slider("Visual Range", 10.0, 200.0, 75.0) | |
| params['min_distance'] = st.sidebar.slider("Minimum Separation Distance", 5.0, 100.0, 20.0) | |
| params['centering_factor'] = st.sidebar.slider("Centering Factor", 0.001, 0.02, 0.005) | |
| params['avoid_factor'] = st.sidebar.slider("Avoidance Factor", 0.01, 0.1, 0.05) | |
| params['matching_factor'] = st.sidebar.slider("Matching Factor", 0.01, 0.1, 0.05) | |
| params['max_speed'] = st.sidebar.slider("Maximum Speed", 5.0, 30.0, 15.0) | |
| params['draw_trail'] = st.sidebar.checkbox("Draw Trails") | |
| if params['draw_trail']: | |
| params['max_history'] = st.sidebar.slider("Trail Length", 10, 100, 50) | |
| params['boundary_margin'] = st.sidebar.slider("Boundary Margin", 50.0, 300.0, 100.0) | |
| params['boundary_turn_factor'] = st.sidebar.slider("Boundary Turn Factor", 0.01, 0.2, 0.05) | |
| # Simulation screen size | |
| width, height = 800, 600 | |
| params['width'] = width | |
| params['height'] = height | |
| # Initialize Boids | |
| boids = [] | |
| for _ in range(params['num_boids']): | |
| position = [np.random.uniform(0, width), np.random.uniform(0, height)] | |
| angle = np.random.uniform(0, 2 * np.pi) | |
| velocity = [np.cos(angle), np.sin(angle)] | |
| boids.append(Boid(position, velocity)) | |
| # Plotly graph setup | |
| fig = go.Figure( | |
| layout=go.Layout( | |
| xaxis=dict(range=[0, width], autorange=False, showgrid=False, zeroline=False), | |
| yaxis=dict(range=[0, height], autorange=False, showgrid=False, zeroline=False), | |
| width=width, | |
| height=height, | |
| margin=dict(l=0, r=0, t=0, b=0) | |
| ) | |
| ) | |
| # Plot initial positions of Boids | |
| scatter = go.Scatter( | |
| x=[boid.position[0] for boid in boids], | |
| y=[boid.position[1] for boid in boids], | |
| mode='markers', | |
| marker=dict(size=8, color='blue') | |
| ) | |
| fig.add_trace(scatter) | |
| # Trail trace | |
| if params['draw_trail']: | |
| trail_scatter = go.Scatter( | |
| x=[], | |
| y=[], | |
| mode='lines', | |
| line=dict(color='rgba(0,0,255,0.2)', width=1), | |
| showlegend=False | |
| ) | |
| fig.add_trace(trail_scatter) | |
| # Simplified Title | |
| st.title("Boids Simulation") | |
| # Animation display area | |
| animation_placeholder = st.empty() | |
| # Explanation Section Title | |
| st.header("Mathematical Background of the Boids Algorithm") | |
| # Explanation Section | |
| st.markdown("### **Overview of the Boids Algorithm**") | |
| st.markdown(""" | |
| The Boids algorithm, proposed by Craig Reynolds in 1986, is a method for simulating flocking behavior in groups of agents called Boids. Each agent follows simple rules to recreate complex group dynamics. The three fundamental rules are: | |
| 1. **Separation**: Maintain a suitable distance from nearby Boids to avoid collisions. | |
| 2. **Alignment**: Align velocity with the average velocity of neighboring Boids. | |
| 3. **Cohesion**: Move towards the average position of neighboring Boids. | |
| """) | |
| st.markdown("### **Mathematical Model**") | |
| st.markdown(""" | |
| The movement of each Boid is represented by its position vector \(\mathbf{p}_i(t)\) and velocity vector \(\mathbf{v}_i(t)\). The position and velocity of Boid \(i\) at time \(t\) are described by the following differential equations: | |
| """) | |
| st.latex(r""" | |
| \frac{d\mathbf{p}_i(t)}{dt} = \mathbf{v}_i(t) | |
| """) | |
| st.latex(r""" | |
| \frac{d\mathbf{v}_i(t)}{dt} = \mathbf{a}_i(t) | |
| """) | |
| st.markdown(""" | |
| Here, the acceleration \(\mathbf{a}_i(t)\) is the sum of three forces: | |
| """) | |
| st.latex(r""" | |
| \mathbf{a}_i(t) = \mathbf{a}_{\text{separation}} + \mathbf{a}_{\text{alignment}} + \mathbf{a}_{\text{cohesion}} | |
| """) | |
| st.markdown("#### **1. Separation**") | |
| st.markdown(""" | |
| To prevent collisions, the separation force is calculated based on the distance \(d_{ij}\) between Boid \(i\) and its neighboring Boids \(j\): | |
| """) | |
| st.latex(r""" | |
| \mathbf{a}_{\text{separation}} = \sum_{j \in N(i)} \frac{\mathbf{p}_i - \mathbf{p}_j}{d_{ij}^2} | |
| """) | |
| st.markdown("where \(N(i)\) is the set of neighboring Boids around Boid \(i\).") | |
| st.markdown("#### **2. Alignment**") | |
| st.markdown(""" | |
| The alignment force encourages Boid \(i\) to match the average velocity \(\mathbf{v}_{\text{avg}}\) of its neighbors: | |
| """) | |
| st.latex(r""" | |
| \mathbf{a}_{\text{alignment}} = \frac{\mathbf{v}_{\text{avg}} - \mathbf{v}_i}{\tau} | |
| """) | |
| st.markdown("where \(\tau\) is a scaling parameter.") | |
| st.markdown("#### **3. Cohesion**") | |
| st.markdown(""" | |
| The cohesion force steers Boid \(i\) towards the average position \(\mathbf{C}_{\text{avg}}\) of its neighbors: | |
| """) | |
| st.latex(r""" | |
| \mathbf{a}_{\text{cohesion}} = \frac{\mathbf{C}_{\text{avg}} - \mathbf{p}_i}{\sigma} | |
| """) | |
| st.markdown("where \(\sigma\) is a scaling parameter.") | |
| st.markdown("### **Update Rules**") | |
| st.markdown(""" | |
| Each Boid's position and velocity are updated based on discrete time steps \(\Delta t\) as follows: | |
| """) | |
| st.latex(r""" | |
| \mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + \mathbf{a}_i(t) \Delta t | |
| """) | |
| st.latex(r""" | |
| \mathbf{p}_i(t + \Delta t) = \mathbf{p}_i(t) + \mathbf{v}_i(t + \Delta t) \Delta t | |
| """) | |
| st.markdown(""" | |
| These equations ensure that each Boid updates its velocity and position based on the combined separation, alignment, and cohesion forces. | |
| """) | |
| st.markdown("### **Additional Features**") | |
| st.markdown(""" | |
| This simulation includes the following additional features: | |
| 1. **Boundary Avoidance**: When a Boid approaches the edge of the simulation area, it receives a steering force to remain within bounds, preventing it from moving off-screen. | |
| 2. **Trail Drawing**: The past positions of each Boid are displayed as trails, allowing visualization of their movement patterns. | |
| """) | |
| st.markdown("### **Parameters and Their Roles**") | |
| st.markdown(""" | |
| - **Boundary Margin (\(M\))**: The distance from the edge of the simulation area at which Boids begin to steer away. | |
| - **Boundary Turn Factor (\(\gamma\))**: The strength of the steering force applied when avoiding boundaries. | |
| These parameters allow fine-tuning of Boid behavior near the edges of the simulation area. | |
| """) | |
| # Animation settings | |
| frame_rate = 30 # Frames per second | |
| sleep_time = 1.0 / frame_rate | |
| # Reset button | |
| if st.sidebar.button("Reset Simulation"): | |
| boids = [] | |
| for _ in range(params['num_boids']): | |
| position = [np.random.uniform(0, width), np.random.uniform(0, height)] | |
| angle = np.random.uniform(0, 2 * np.pi) | |
| velocity = [np.cos(angle), np.sin(angle)] | |
| boids.append(Boid(position, velocity)) | |
| # Animation loop | |
| while True: | |
| # Update Boids | |
| for boid in boids: | |
| boid.update(boids, width, height, params) | |
| # Update Boids' positions | |
| scatter.x = [boid.position[0] for boid in boids] | |
| scatter.y = [boid.position[1] for boid in boids] | |
| # Update trails | |
| if params['draw_trail']: | |
| trail_x = [] | |
| trail_y = [] | |
| for boid in boids: | |
| trail_x.extend([pos[0] for pos in boid.history]) | |
| trail_y.extend([pos[1] for pos in boid.history]) | |
| trail_scatter.x = trail_x | |
| trail_scatter.y = trail_y | |
| # Update the Plotly figure | |
| fig.data[0].x = scatter.x | |
| fig.data[0].y = scatter.y | |
| if params['draw_trail']: | |
| fig.data[1].x = trail_scatter.x | |
| fig.data[1].y = trail_scatter.y | |
| # Display the animation | |
| animation_placeholder.plotly_chart(fig, use_container_width=True) | |
| # Control the frame rate | |
| time.sleep(sleep_time) |