Spaces:
Running
Running
""" | |
Prints out the ratio of activation memory for the a transformer Block when using ReLU vs GELU. | |
""" | |
import torch | |
import torch.nn as nn | |
import act_mem | |
import layers | |
if __name__ == "__main__": | |
batch_size, seq_len, d_model, n_heads = 2, 4096, 1024, 2 | |
dtype = torch.bfloat16 | |
inputs = torch.randn( | |
batch_size, | |
seq_len, | |
d_model, | |
device="cuda", | |
requires_grad=True, | |
dtype=dtype, | |
) | |
act_fn_dict = {"ReLU": nn.ReLU(), "GELU": nn.GELU()} | |
# Append outputs to a list to keep tensors alive | |
outputs = [] | |
mem_bytes = [] | |
for name, act_fn in act_fn_dict.items(): | |
block = layers.Block( | |
d_model=d_model, | |
act_fn=act_fn, | |
n_heads=n_heads, | |
device="cuda", | |
dtype=dtype, | |
) | |
with act_mem.AllocatedMemContext() as mem, act_mem.SavedTensorContext( | |
ignored_tensors=block.parameters() | |
) as saved: | |
out = block(inputs) | |
outputs.append(out) | |
print(f"{name} block bytes: {saved.saved_tensor_mem}") | |
mem_bytes.append(saved.saved_tensor_mem) | |
print(f"ReLU/GeLU block act mem ratio: {mem_bytes[0]/mem_bytes[1]}") | |