Spaces:
Runtime error
Runtime error
"""Quantum-inspired reasoning implementations.""" | |
import logging | |
from typing import Dict, Any, List | |
import json | |
from .base import ReasoningStrategy | |
class QuantumReasoning(ReasoningStrategy): | |
"""Implements quantum-inspired reasoning using superposition and entanglement principles.""" | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
try: | |
# Create superposition of possibilities | |
superposition = await self._create_superposition(query, context) | |
# Analyze entanglements | |
entanglements = await self._analyze_entanglements(superposition, context) | |
# Perform quantum interference | |
interference = await self._quantum_interference(superposition, entanglements, context) | |
# Collapse to solution | |
solution = await self._collapse_to_solution(interference, context) | |
return { | |
"success": True, | |
"answer": solution["conclusion"], | |
"superposition": superposition, | |
"entanglements": entanglements, | |
"interference_patterns": interference, | |
"measurement": solution["measurement"], | |
"confidence": solution["confidence"] | |
} | |
except Exception as e: | |
return {"success": False, "error": str(e)} | |
async def _create_superposition(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
prompt = f""" | |
Create superposition of possible solutions: | |
Query: {query} | |
Context: {json.dumps(context)} | |
For each possibility state: | |
1. [State]: Description of possibility | |
2. [Amplitude]: Relative strength (0-1) | |
3. [Phase]: Relationship to other states | |
4. [Basis]: Underlying assumptions | |
Format as: | |
[S1] | |
State: ... | |
Amplitude: ... | |
Phase: ... | |
Basis: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_superposition(response["answer"]) | |
async def _analyze_entanglements(self, superposition: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
prompt = f""" | |
Analyze entanglements between possibilities: | |
Superposition: {json.dumps(superposition)} | |
Context: {json.dumps(context)} | |
For each entanglement describe: | |
1. [States]: Entangled states | |
2. [Type]: Nature of entanglement | |
3. [Strength]: Correlation strength | |
4. [Impact]: Effect on outcomes | |
Format as: | |
[E1] | |
States: ... | |
Type: ... | |
Strength: ... | |
Impact: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_entanglements(response["answer"]) | |
async def _quantum_interference(self, superposition: List[Dict[str, Any]], entanglements: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
prompt = f""" | |
Calculate quantum interference patterns: | |
Superposition: {json.dumps(superposition)} | |
Entanglements: {json.dumps(entanglements)} | |
Context: {json.dumps(context)} | |
For each interference pattern: | |
1. [Pattern]: Description | |
2. [Amplitude]: Combined strength | |
3. [Phase]: Combined phase | |
4. [Effect]: Impact on solution space | |
Format as: | |
[I1] | |
Pattern: ... | |
Amplitude: ... | |
Phase: ... | |
Effect: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_interference(response["answer"]) | |
async def _collapse_to_solution(self, interference: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: | |
prompt = f""" | |
Collapse quantum state to final solution: | |
Interference: {json.dumps(interference)} | |
Context: {json.dumps(context)} | |
Provide: | |
1. Final measured state | |
2. Measurement confidence | |
3. Key quantum effects utilized | |
4. Overall conclusion | |
5. Confidence level (0-1) | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_collapse(response["answer"]) | |
def _parse_superposition(self, response: str) -> List[Dict[str, Any]]: | |
"""Parse superposition states from response.""" | |
superposition = [] | |
current_state = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[S'): | |
if current_state: | |
superposition.append(current_state) | |
current_state = { | |
"state": "", | |
"amplitude": 0.0, | |
"phase": "", | |
"basis": "" | |
} | |
elif current_state: | |
if line.startswith('State:'): | |
current_state["state"] = line[6:].strip() | |
elif line.startswith('Amplitude:'): | |
try: | |
current_state["amplitude"] = float(line[10:].strip()) | |
except: | |
pass | |
elif line.startswith('Phase:'): | |
current_state["phase"] = line[6:].strip() | |
elif line.startswith('Basis:'): | |
current_state["basis"] = line[6:].strip() | |
if current_state: | |
superposition.append(current_state) | |
return superposition | |
def _parse_entanglements(self, response: str) -> List[Dict[str, Any]]: | |
"""Parse entanglements from response.""" | |
entanglements = [] | |
current_entanglement = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[E'): | |
if current_entanglement: | |
entanglements.append(current_entanglement) | |
current_entanglement = { | |
"states": "", | |
"type": "", | |
"strength": 0.0, | |
"impact": "" | |
} | |
elif current_entanglement: | |
if line.startswith('States:'): | |
current_entanglement["states"] = line[7:].strip() | |
elif line.startswith('Type:'): | |
current_entanglement["type"] = line[5:].strip() | |
elif line.startswith('Strength:'): | |
try: | |
current_entanglement["strength"] = float(line[9:].strip()) | |
except: | |
pass | |
elif line.startswith('Impact:'): | |
current_entanglement["impact"] = line[7:].strip() | |
if current_entanglement: | |
entanglements.append(current_entanglement) | |
return entanglements | |
def _parse_interference(self, response: str) -> List[Dict[str, Any]]: | |
"""Parse interference patterns from response.""" | |
interference = [] | |
current_pattern = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[I'): | |
if current_pattern: | |
interference.append(current_pattern) | |
current_pattern = { | |
"pattern": "", | |
"amplitude": 0.0, | |
"phase": "", | |
"effect": "" | |
} | |
elif current_pattern: | |
if line.startswith('Pattern:'): | |
current_pattern["pattern"] = line[8:].strip() | |
elif line.startswith('Amplitude:'): | |
try: | |
current_pattern["amplitude"] = float(line[10:].strip()) | |
except: | |
pass | |
elif line.startswith('Phase:'): | |
current_pattern["phase"] = line[6:].strip() | |
elif line.startswith('Effect:'): | |
current_pattern["effect"] = line[7:].strip() | |
if current_pattern: | |
interference.append(current_pattern) | |
return interference | |
def _parse_collapse(self, response: str) -> Dict[str, Any]: | |
"""Parse collapse to solution from response.""" | |
collapse = { | |
"measurement": "", | |
"confidence": 0.0, | |
"quantum_effects": [], | |
"conclusion": "" | |
} | |
mode = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('Measurement:'): | |
collapse["measurement"] = line[12:].strip() | |
elif line.startswith('Confidence:'): | |
try: | |
collapse["confidence"] = float(line[11:].strip()) | |
except: | |
collapse["confidence"] = 0.5 | |
elif line.startswith('Quantum Effects:'): | |
mode = "effects" | |
elif mode == "effects" and line.startswith('- '): | |
collapse["quantum_effects"].append(line[2:].strip()) | |
elif line.startswith('Conclusion:'): | |
collapse["conclusion"] = line[11:].strip() | |
return collapse | |
class QuantumInspiredStrategy(ReasoningStrategy): | |
"""Implements Quantum-Inspired reasoning.""" | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
try: | |
# Create a clean context for serialization | |
clean_context = {k: v for k, v in context.items() if k != "groq_api"} | |
prompt = f""" | |
You are a meta-learning reasoning system that adapts its approach based on problem characteristics. | |
Problem Type: | |
Query: {query} | |
Context: {json.dumps(clean_context)} | |
Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: | |
PROBLEM ANALYSIS: | |
- [First key aspect or complexity factor] | |
- [Second key aspect or complexity factor] | |
- [Third key aspect or complexity factor] | |
SOLUTION PATHS: | |
- Path 1: [Specific solution approach] | |
- Path 2: [Alternative solution approach] | |
- Path 3: [Another alternative approach] | |
META INSIGHTS: | |
- Learning 1: [Key insight about the problem space] | |
- Learning 2: [Key insight about solution approaches] | |
- Learning 3: [Key insight about trade-offs] | |
CONCLUSION: | |
[Final synthesized solution incorporating meta-learnings] | |
""" | |
response = await context["groq_api"].predict(prompt) | |
if not response["success"]: | |
return response | |
# Parse response into components | |
lines = response["answer"].split("\n") | |
problem_analysis = [] | |
solution_paths = [] | |
meta_insights = [] | |
conclusion = "" | |
section = None | |
for line in lines: | |
line = line.strip() | |
if not line: | |
continue | |
if "PROBLEM ANALYSIS:" in line: | |
section = "analysis" | |
elif "SOLUTION PATHS:" in line: | |
section = "paths" | |
elif "META INSIGHTS:" in line: | |
section = "insights" | |
elif "CONCLUSION:" in line: | |
section = "conclusion" | |
elif line.startswith("-"): | |
content = line.lstrip("- ").strip() | |
if section == "analysis": | |
problem_analysis.append(content) | |
elif section == "paths": | |
solution_paths.append(content) | |
elif section == "insights": | |
meta_insights.append(content) | |
elif section == "conclusion": | |
conclusion += line + " " | |
return { | |
"success": True, | |
"problem_analysis": problem_analysis, | |
"solution_paths": solution_paths, | |
"meta_insights": meta_insights, | |
"conclusion": conclusion.strip(), | |
# Add standard fields for compatibility | |
"reasoning_path": problem_analysis + solution_paths + meta_insights, | |
"conclusion": conclusion.strip() | |
} | |
except Exception as e: | |
return {"success": False, "error": str(e)} | |