Spaces:
Runtime error
Runtime error
import gradio as gr | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
INTRODUCTION_TEXT, | |
BENCHMARKS_TEXT, | |
TITLE, | |
EVALUATION_QUEUE_TEXT | |
) | |
from src.display.css_html_js import custom_css | |
from src.leaderboard.read_evals import get_raw_eval_results, get_leaderboard_df | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN | |
from utils import update_table, update_metric, update_table_long_doc, upload_file | |
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, metric_list | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
# try: | |
# print(EVAL_RESULTS_PATH) | |
# snapshot_download( | |
# repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, | |
# token=TOKEN | |
# ) | |
# except Exception: | |
# restart_space() | |
raw_data = get_raw_eval_results(EVAL_RESULTS_PATH) | |
original_df_qa = get_leaderboard_df( | |
raw_data, task='qa', metric='ndcg_at_3') | |
original_df_long_doc = get_leaderboard_df( | |
raw_data, task='long_doc', metric='ndcg_at_3') | |
print(f'raw data: {len(raw_data)}') | |
print(f'QA data loaded: {original_df_qa.shape}') | |
print(f'Long-Doc data loaded: {len(original_df_long_doc)}') | |
leaderboard_df_qa = original_df_qa.copy() | |
leaderboard_df_long_doc = original_df_long_doc.copy() | |
def update_metric_qa( | |
metric: str, | |
domains: list, | |
langs: list, | |
reranking_model: list, | |
query: str, | |
): | |
return update_metric(raw_data, 'qa', metric, domains, langs, reranking_model, query) | |
def update_metric_long_doc( | |
metric: str, | |
domains: list, | |
langs: list, | |
reranking_model: list, | |
query: str, | |
): | |
return update_metric(raw_data, 'long_doc', metric, domains, langs, reranking_model, query) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("QA", elem_id="qa-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
# search bar for model name | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
# select the metric | |
selected_metric = gr.Dropdown( | |
choices=metric_list, | |
value=metric_list[1], | |
label="Select the metric", | |
interactive=True, | |
elem_id="metric-select", | |
) | |
with gr.Column(min_width=320): | |
# select domain | |
with gr.Row(): | |
selected_domains = gr.CheckboxGroup( | |
choices=DOMAIN_COLS_QA, | |
value=DOMAIN_COLS_QA, | |
label="Select the domains", | |
elem_id="domain-column-select", | |
interactive=True, | |
) | |
# select language | |
with gr.Row(): | |
selected_langs = gr.CheckboxGroup( | |
choices=LANG_COLS_QA, | |
value=LANG_COLS_QA, | |
label="Select the languages", | |
elem_id="language-column-select", | |
interactive=True | |
) | |
# select reranking model | |
reranking_models = list(frozenset([eval_result.reranking_model for eval_result in raw_data])) | |
with gr.Row(): | |
selected_rerankings = gr.CheckboxGroup( | |
choices=reranking_models, | |
value=reranking_models, | |
label="Select the reranking models", | |
elem_id="reranking-select", | |
interactive=True | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df_qa, | |
# headers=shown_columns, | |
# datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=leaderboard_df_qa, | |
# headers=COLS, | |
# datatype=TYPES, | |
visible=False, | |
) | |
# Set search_bar listener | |
search_bar.submit( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
selected_domains, | |
selected_langs, | |
selected_rerankings, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
# Set column-wise listener | |
for selector in [ | |
selected_domains, selected_langs, selected_rerankings | |
]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
selected_domains, | |
selected_langs, | |
selected_rerankings, | |
search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
# set metric listener | |
selected_metric.change( | |
update_metric_qa, | |
[ | |
selected_metric, | |
selected_domains, | |
selected_langs, | |
selected_rerankings, | |
search_bar, | |
], | |
leaderboard_table, | |
queue=True | |
) | |
with gr.TabItem("Long Doc", elem_id="long-doc-benchmark-tab-table", id=1): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar-long-doc", | |
) | |
# select the metric | |
selected_metric = gr.Dropdown( | |
choices=metric_list, | |
value=metric_list[1], | |
label="Select the metric", | |
interactive=True, | |
elem_id="metric-select-long-doc", | |
) | |
with gr.Column(min_width=320): | |
# select domain | |
with gr.Row(): | |
selected_domains = gr.CheckboxGroup( | |
choices=DOMAIN_COLS_LONG_DOC, | |
value=DOMAIN_COLS_LONG_DOC, | |
label="Select the domains", | |
elem_id="domain-column-select-long-doc", | |
interactive=True, | |
) | |
# select language | |
with gr.Row(): | |
selected_langs = gr.CheckboxGroup( | |
choices=LANG_COLS_LONG_DOC, | |
value=LANG_COLS_LONG_DOC, | |
label="Select the languages", | |
elem_id="language-column-select-long-doc", | |
interactive=True | |
) | |
# select reranking model | |
reranking_models = list(frozenset([eval_result.reranking_model for eval_result in raw_data])) | |
with gr.Row(): | |
selected_rerankings = gr.CheckboxGroup( | |
choices=reranking_models, | |
value=reranking_models, | |
label="Select the reranking models", | |
elem_id="reranking-select-long-doc", | |
interactive=True | |
) | |
leaderboard_table_long_doc = gr.components.Dataframe( | |
value=leaderboard_df_long_doc, | |
# headers=shown_columns, | |
# datatype=TYPES, | |
elem_id="leaderboard-table-long-doc", | |
interactive=False, | |
visible=True, | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=leaderboard_df_long_doc, | |
# headers=COLS, | |
# datatype=TYPES, | |
visible=False, | |
) | |
# Set search_bar listener | |
search_bar.submit( | |
update_table_long_doc, | |
[ | |
hidden_leaderboard_table_for_search, | |
selected_domains, | |
selected_langs, | |
selected_rerankings, | |
search_bar, | |
], | |
leaderboard_table_long_doc, | |
) | |
# Set column-wise listener | |
for selector in [ | |
selected_domains, selected_langs, selected_rerankings | |
]: | |
selector.change( | |
update_table_long_doc, | |
[ | |
hidden_leaderboard_table_for_search, | |
selected_domains, | |
selected_langs, | |
selected_rerankings, | |
search_bar, | |
], | |
leaderboard_table_long_doc, | |
queue=True, | |
) | |
# set metric listener | |
selected_metric.change( | |
update_metric_long_doc, | |
[ | |
selected_metric, | |
selected_domains, | |
selected_langs, | |
selected_rerankings, | |
search_bar, | |
], | |
leaderboard_table_long_doc, | |
queue=True | |
) | |
with gr.TabItem("🚀Submit here!", elem_id="submit-tab-table", id=2): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown("## ✉️Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
file_output = gr.File() | |
with gr.Row(): | |
upload_button = gr.UploadButton("Click to submit evaluation", file_count="multiple") | |
upload_button.upload(upload_file, upload_button, file_output) | |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3): | |
gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text") | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() | |