text-audio-video-policies / greg_funcs.py
michal
the brain splice commit !!
5b01087
raw
history blame
2.82 kB
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from torch import tensor as torch_tensor
from datasets import load_dataset
from langchain.llms import OpenAI
from langchain.docstore.document import Document
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
"""# import models"""
bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
#The bi-encoder will retrieve top_k documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
"""# import datasets"""
dataset = load_dataset("gfhayworth/hack_policy", split='train')
mypassages = list(dataset.to_pandas()['psg'])
dataset_embed = load_dataset("gfhayworth/hack_policy_embed", split='train')
dataset_embed_pd = dataset_embed.to_pandas()
mycorpus_embeddings = torch_tensor(dataset_embed_pd.values)
def search(query, passages = mypassages, doc_embedding = mycorpus_embeddings, top_k=20, top_n = 1):
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
question_embedding = question_embedding #.cuda()
hits = util.semantic_search(question_embedding, doc_embedding, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
predictions = hits[:top_n]
return predictions
# for hit in hits[0:3]:
# print("\t{:.3f}\t{}".format(hit['cross-score'], mypassages[hit['corpus_id']].replace("\n", " ")))
def get_text_fmt(qry, passages = mypassages, doc_embedding=mycorpus_embeddings):
predictions = search(qry, passages = passages, doc_embedding = doc_embedding, top_n=5, )
prediction_text = []
for hit in predictions:
page_content = passages[hit['corpus_id']]
metadata = {"source": hit['corpus_id']}
result = Document(page_content=page_content, metadata=metadata)
prediction_text.append(result)
return prediction_text
chain_qa = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="stuff")
def get_llm_response(message):
mydocs = get_text_fmt(message)
response = chain_qa.run(input_documents=mydocs, question=message)
return response
def chat(message, history):
history = history or []
message = message.lower()
response = get_llm_response(message)
history.append((message, response))
return history, history