nam_nguyenhoai_AI
commited on
Commit
•
4fe0a37
1
Parent(s):
14c776e
Add application file
Browse files- .gitattributes +2 -0
- app.py +52 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
.git/assets/Jumps.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from transformers import pipeline
|
5 |
+
import os
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torchvision import transforms
|
9 |
+
from torchvision.transforms import Compose
|
10 |
+
import spaces
|
11 |
+
|
12 |
+
title = "# Video Summarization using Timesformer Demo"
|
13 |
+
description = """ Author: Nguyen Hoai Nam."""
|
14 |
+
css = """
|
15 |
+
#img-display-container {
|
16 |
+
max-height: 100vh;
|
17 |
+
}
|
18 |
+
#img-display-input {
|
19 |
+
max-height: 80vh;
|
20 |
+
}
|
21 |
+
#img-display-output {
|
22 |
+
max-height: 80vh;
|
23 |
+
}
|
24 |
+
"""
|
25 |
+
|
26 |
+
with gr.Blocks(css=css) as demo:
|
27 |
+
gr.Markdown(title)
|
28 |
+
gr.Markdown(description)
|
29 |
+
gr.Markdown("### Video Summarization demo")
|
30 |
+
|
31 |
+
with gr.Row():
|
32 |
+
input_video = gr.Video(label="Input Video")
|
33 |
+
model_type = gr.Dropdown(["K-means", "Sum of Squared Difference 01", "Sum of Squared Difference 02"], type="value", label='Model Type')
|
34 |
+
submit = gr.Button("Submit")
|
35 |
+
processed_video = gr.Video(label="Summarized Video")
|
36 |
+
|
37 |
+
def on_submit(uploaded_video,model_type):
|
38 |
+
pass
|
39 |
+
# Process the video and get the path of the output video
|
40 |
+
#output_video_path = make_video(uploaded_video,encoder=model_type)
|
41 |
+
|
42 |
+
#return output_video_path
|
43 |
+
|
44 |
+
submit.click(on_submit, inputs=[input_video, model_type], outputs=processed_video)
|
45 |
+
|
46 |
+
example_files = os.listdir('assets/examples_video')
|
47 |
+
example_files.sort()
|
48 |
+
example_files = [os.path.join('assets/examples_video', filename) for filename in example_files]
|
49 |
+
examples = gr.Examples(examples=example_files, inputs=[input_video], outputs=processed_video, fn=on_submit, cache_examples=True)
|
50 |
+
|
51 |
+
if __name__ == '__main__':
|
52 |
+
demo.queue().launch()
|