nami0342's picture
Non zeroGPU env setting for test
483eea7
import spaces
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler,AutoencoderKL
from typing import List
import torch
import os
import io
import warnings
import requests
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
# import pillow_heif # HEIC 이미지 처리용 (아이폰 촬영 사진 포맷)
from urllib.parse import urlparse
# zeroGPU ν™˜κ²½μ—μ„œ compile μ‚¬μš© μ—¬λΆ€
is_compile_for_zeroGPU = False # True: compile μ‚¬μš©, False: compile μ‚¬μš© μ•ˆ 함
# SSL κ²½κ³  μ–΅μ œ
warnings.filterwarnings("ignore", message=".*OpenSSL.*")
warnings.filterwarnings("ignore", category=UserWarning, module="urllib3")
# requests μ„Έμ…˜ μ„€μ •
session = requests.Session()
session.verify = False # SSL 검증 λΉ„ν™œμ„±ν™” (개발 ν™˜κ²½μš©)
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image)
grayscale_image = Image.fromarray(np_image).convert("L")
binary_mask = np.array(grayscale_image) > threshold
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
for i in range(binary_mask.shape[0]):
for j in range(binary_mask.shape[1]):
if binary_mask[i,j] == True :
mask[i,j] = 1
mask = (mask*255).astype(np.uint8)
output_mask = Image.fromarray(mask)
return output_mask
print("=" * 60)
print("Starting GENAI-VTON Application Initialization")
print("=" * 60)
base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')
print("\n[1/10] Loading UNet model...")
unet = UNet2DConditionModel.from_pretrained(
base_path,
subfolder="unet",
torch_dtype=torch.float16,
)
unet.requires_grad_(False)
# torch.compile() 적용 - μΆ”λ‘  속도 20-40% ν–₯상 (PyTorch 2.0+)
# 주의: 첫 번째 좔둠은 컴파일둜 인해 느릴 수 있음
if is_compile_for_zeroGPU == True:
print("βœ“ UNet model loaded successfully")
else:
if hasattr(torch, 'compile'):
try:
unet = torch.compile(unet, mode="reduce-overhead")
print("βœ“ UNet model loaded and compiled successfully")
except Exception as e:
print(f"βœ“ UNet model loaded (compile skipped: {e})")
else:
print("βœ“ UNet model loaded successfully")
print("\n[2/10] Loading tokenizers...")
tokenizer_one = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer_2",
revision=None,
use_fast=False,
)
print("βœ“ Tokenizers loaded successfully")
print("\n[3/10] Loading noise scheduler...")
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
print("βœ“ Noise scheduler loaded successfully")
print("\n[4/10] Loading text encoders...")
text_encoder_one = CLIPTextModel.from_pretrained(
base_path,
subfolder="text_encoder",
torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
base_path,
subfolder="text_encoder_2",
torch_dtype=torch.float16,
)
print("βœ“ Text encoders loaded successfully")
print("\n[5/10] Loading image encoder...")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
base_path,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
print("βœ“ Image encoder loaded successfully")
print("\n[6/10] Loading VAE...")
vae = AutoencoderKL.from_pretrained(base_path,
subfolder="vae",
torch_dtype=torch.float16,
)
# torch.compile() 적용 - VAE 인코딩/λ””μ½”λ”© 속도 ν–₯상
if is_compile_for_zeroGPU == True:
print("βœ“ VAE loaded successfully")
else:
if hasattr(torch, 'compile'):
try:
vae = torch.compile(vae, mode="reduce-overhead")
print("βœ“ VAE loaded and compiled successfully")
except Exception as e:
print(f"βœ“ VAE loaded (compile skipped: {e})")
else:
print("βœ“ VAE loaded successfully")
print("\n[7/10] Loading UNet Encoder...")
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
base_path,
subfolder="unet_encoder",
torch_dtype=torch.float16,
)
# torch.compile() 적용 - UNet Encoder 속도 ν–₯상
if is_compile_for_zeroGPU == True:
print("βœ“ UNet Encoder loaded successfully")
else:
if hasattr(torch, 'compile'):
try:
UNet_Encoder = torch.compile(UNet_Encoder, mode="reduce-overhead")
print("βœ“ UNet Encoder loaded and compiled successfully")
except Exception as e:
print(f"βœ“ UNet Encoder loaded (compile skipped: {e})")
else:
print("βœ“ UNet Encoder loaded successfully")
print("\n[8/10] Initializing parsing and openpose models...")
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
print("βœ“ Parsing and OpenPose models initialized")
print("\n[9/10] Configuring model parameters...")
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
print("βœ“ Model parameters configured")
print("\n[10/10] Initializing TryonPipeline...")
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor= CLIPImageProcessor(),
text_encoder = text_encoder_one,
text_encoder_2 = text_encoder_two,
tokenizer = tokenizer_one,
tokenizer_2 = tokenizer_two,
scheduler = noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder
print("βœ“ TryonPipeline initialized successfully")
# torch, diffusers λ“± 버전 정리 ν›„ 적용 κ°€λŠ₯.
# # xFormers λ©”λͺ¨λ¦¬ 효율적 μ–΄ν…μ…˜ ν™œμ„±ν™” (λ©”λͺ¨λ¦¬ 20-30% κ°μ†Œ, 속도 10-20% ν–₯상)
# print("\n[Optimization] Enabling xFormers memory efficient attention...")
# try:
# pipe.enable_xformers_memory_efficient_attention()
# print("βœ“ xFormers memory efficient attention enabled")
# except Exception as e:
# print(f"⚠ xFormers not available, using default attention: {e}")
print("\n" + "=" * 60)
print("All models loaded successfully!")
print("=" * 60 + "\n")
# Warm-up: 첫 번째 μΆ”λ‘  μ§€μ—° κ°μ†Œλ₯Ό μœ„ν•œ λͺ¨λΈ μ΄ˆκΈ°ν™”
# JIT 컴파일, CUDA 컀널 λ‘œλ”© 등을 미리 μˆ˜ν–‰
print("=" * 60)
print("Warming up models (CPU)...")
print("=" * 60)
def warmup_models_cpu():
"""μ•± μ‹œμž‘ μ‹œ CPU λͺ¨λΈ μ΄ˆκΈ°ν™”λ₯Ό μœ„ν•œ Warm-up ν•¨μˆ˜"""
try:
# CPUμ—μ„œ ν…μŠ€νŠΈ μž„λ² λ”© Warm-up (Tokenizer + Text Encoder μ΄ˆκΈ°ν™”)
print("[CPU Warm-up 1/2] Text Encoder warm-up...")
with torch.no_grad():
dummy_prompt = "a photo of clothing"
dummy_tokens = tokenizer_one(
dummy_prompt,
padding="max_length",
max_length=tokenizer_one.model_max_length,
truncation=True,
return_tensors="pt"
)
# CPUμ—μ„œ μ‹€ν–‰ κ°€λŠ₯ν•œ μ΄ˆκΈ°ν™”
_ = text_encoder_one(dummy_tokens.input_ids, output_hidden_states=True)
print("βœ“ Text Encoder warmed up")
# Tensor λ³€ν™˜ Warm-up
print("[CPU Warm-up 2/2] Tensor transform warm-up...")
dummy_img = Image.new('RGB', (768, 1024), color='white')
_ = tensor_transfrom(dummy_img)
print("βœ“ Tensor transform warmed up")
return True
except Exception as e:
print(f"⚠ CPU Warm-up partially completed: {e}")
return False
# CPU Warm-up μ‹€ν–‰
warmup_success = warmup_models_cpu()
if warmup_success:
print("\nβœ“ CPU warm-up completed successfully")
else:
print("\n⚠ CPU warm-up completed with warnings")
print("=" * 60 + "\n")
# torch.compile 였λ₯˜ μ‹œ eager λͺ¨λ“œλ‘œ 폴백 μ„€μ •
# μ»€μŠ€ν…€ UNet forward λ©”μ„œλ“œ ν˜Έν™˜μ„± 문제 λŒ€μ‘
if is_compile_for_zeroGPU == True:
print("βœ“ torch.compile is disabled for ZeroGPU")
else:
try:
import torch._dynamo
torch._dynamo.config.suppress_errors = True
print("βœ“ torch._dynamo.config.suppress_errors enabled (fallback to eager mode on error)")
except Exception as e:
print(f"⚠ torch._dynamo config not available: {e}")
# GPU Warm-up ν•¨μˆ˜ (μ•± λ‘œλ“œ μ‹œ μžλ™ μ‹€ν–‰)
# Text Encoder, VAE GPU λ‘œλ”© 및 CUDA 컀널 μ΄ˆκΈ°ν™”
@spaces.GPU
def warmup_gpu():
"""μ•± λ‘œλ“œ μ‹œ GPU λͺ¨λΈ μ΄ˆκΈ°ν™”λ₯Ό μœ„ν•œ Warm-up ν•¨μˆ˜"""
try:
device = "cuda"
print("=" * 60)
print("GPU Warm-up: Loading models to GPU and initializing CUDA kernels...")
print("=" * 60)
# λͺ¨λΈμ„ GPU둜 이동
print("[GPU Warm-up 1/4] Moving models to GPU...")
pipe.to(device)
pipe.unet_encoder.to(device)
print("βœ“ Models moved to GPU")
# 더미 ν…μ„œ 생성
with torch.no_grad():
with torch.cuda.amp.autocast():
# 1. 더미 ν”„λ‘¬ν”„νŠΈ μž„λ² λ”© 생성 (Text Encoder GPU warm-up)
print("[GPU Warm-up 2/4] Text Encoder GPU warm-up...")
dummy_prompt = "a photo of white t-shirt"
_ = pipe.encode_prompt(
dummy_prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt="low quality",
)
print("βœ“ Text Encoder GPU warmed up")
# 2. 더미 μ΄λ―Έμ§€λ‘œ VAE 인코딩/λ””μ½”λ”© (VAE GPU warm-up)
print("[GPU Warm-up 3/4] VAE GPU warm-up...")
dummy_img = torch.randn(1, 3, 1024, 768).to(device, torch.float16)
latents = pipe.vae.encode(dummy_img).latent_dist.sample()
_ = pipe.vae.decode(latents)
print("βœ“ VAE GPU warmed up (encode + decode)")
# 3. CUDA 동기화 (컀널 λ‘œλ”© μ™„λ£Œ λŒ€κΈ°)
print("[GPU Warm-up 4/4] CUDA synchronization...")
torch.cuda.synchronize()
print("βœ“ CUDA kernels initialized")
# GPU λ©”λͺ¨λ¦¬ 정리
torch.cuda.empty_cache()
print("\n" + "=" * 60)
print("βœ“ GPU Warm-up completed!")
print(" Text Encoder, VAE ready. UNet will compile on first request.")
print(" (torch.compile errors will fallback to eager mode)")
print("=" * 60 + "\n")
return "GPU Warm-up completed successfully!"
except Exception as e:
print(f"\n⚠ GPU Warm-up failed: {e}")
print(" Models will be loaded on first user request.")
return f"GPU Warm-up skipped: {e}"
# 이미지 μ „μ²˜λ¦¬ ν•¨μˆ˜
def preprocess_image(image):
# HEIC 이미지 처리
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# HEIC 이미지λ₯Ό JPEG둜 λ³€ν™˜ - 이거 μ•ˆ λ¨ΉνžˆλŠ” κ±° 같은데....
try:
output = io.BytesIO()
image.convert("RGB").save(output, format="JPEG", quality=95)
output.seek(0)
image = Image.open(output)
except Exception as e:
print(f"Error converting image: {e}")
# λ³€ν™˜ μ‹€νŒ¨ μ‹œ 원본 이미지 μ‚¬μš©
image = image.convert("RGB")
# 이미지 크기 κ°€μ Έμ˜€κΈ°
width, height = image.size
# 3:4 λΉ„μœ¨λ‘œ 쀑앙 자λ₯΄κΈ°
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
top = (height - target_height) / 2
right = (width + target_width) / 2
bottom = (height + target_height) / 2
# 이미지 자λ₯΄κΈ°
cropped_img = image.crop((left, top, right, bottom))
# 768x1024둜 리사이징
resized_img = cropped_img.resize((768, 1024), resample=Image.Resampling.LANCZOS)
return resized_img
# URLμ—μ„œ 이미지 κ°€μ Έμ˜€κΈ° ν•¨μˆ˜
def load_image_from_url(url):
try:
response = session.get(url, stream=True, timeout=10)
response.raise_for_status() # HTTP 였λ₯˜ 확인
# 이미지 λ‹€μš΄λ‘œλ“œ
img = Image.open(response.raw).convert("RGB")
# JPEG둜 λ³€ν™˜
output = io.BytesIO()
img.save(output, format="JPEG", quality=95)
output.seek(0)
# λ³€ν™˜λœ JPEG 이미지 λ°˜ν™˜
jpeg_img = Image.open(output)
return jpeg_img
except requests.exceptions.RequestException as e:
print(f"Error downloading image from URL: {e}")
return None
except Exception as e:
print(f"Error processing image from URL: {e}")
return None
def process_url_image(url):
"""Process image from URL and return PIL Image"""
if not url or not url.strip():
return None
# URL μœ νš¨μ„± 검사
try:
result = urlparse(url)
if not all([result.scheme, result.netloc]):
print("Invalid URL format")
return None
except Exception as e:
print(f"Error parsing URL: {e}")
return None
img = load_image_from_url(url)
if img is None:
print("Failed to load image from URL")
return None
return preprocess_image(img)
def load_example_for_editor(image_path):
"""Load example image for ImageEditor component"""
if image_path is None:
return None
# ImageEditorλŠ” νŠΉμ • ν˜•μ‹μ„ κΈ°λŒ€ν•˜λ―€λ‘œ λ”•μ…”λ„ˆλ¦¬ ν˜•νƒœλ‘œ λ°˜ν™˜
return {
"background": image_path,
"layers": None,
"composite": None
}
def download_model_file(model_path, urls):
"""Download model file from multiple URLs if it doesn't exist"""
if os.path.exists(model_path):
print(f"Model file already exists: {model_path}")
return True
os.makedirs(os.path.dirname(model_path), exist_ok=True)
for url in urls:
try:
print(f"Downloading from: {url}")
response = requests.get(url, stream=True)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
block_size = 8192
with open(model_path, 'wb') as f:
downloaded = 0
for chunk in response.iter_content(chunk_size=block_size):
if chunk:
f.write(chunk)
downloaded += len(chunk)
if total_size > 0:
percent = (downloaded / total_size) * 100
if(percent % 10 == 0):
print(f"\rDownload progress: {percent:.1f}%", end='', flush=True)
print(f"\nSuccessfully downloaded: {model_path}")
return True
except Exception as e:
print(f"Failed to download from {url}: {e}")
continue
print(f"Failed to download model file from all URLs: {model_path}")
return False
def download_densepose_model():
"""Download DensePose model file"""
model_path = "ckpt/densepose/model_final_162be9.pkl"
urls = [
"https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl",
"https://github.com/facebookresearch/densepose/releases/download/v1.0/model_final_162be9.pkl"
]
return download_model_file(model_path, urls)
def download_openpose_model():
"""Download OpenPose model file"""
model_path = "ckpt/openpose/ckpts/body_pose_model.pth"
urls = [
"https://huggingface.co/lllyasviel/Annotators/resolve/main/body_pose_model.pth"
]
return download_model_file(model_path, urls)
def download_humanparsing_models():
"""Download Human Parsing model files"""
base_url = "https://huggingface.co/Longcat2957/humanparsing-onnx/resolve/main"
models = [
("ckpt/humanparsing/parsing_atr.onnx", f"{base_url}/parsing_atr.onnx"),
("ckpt/humanparsing/parsing_lip.onnx", f"{base_url}/parsing_lip.onnx")
]
success = True
for model_path, url in models:
if os.path.exists(model_path):
print(f"Human parsing model already exists: {model_path}")
continue
print(f"Downloading {model_path} from {url}")
if download_model_file(model_path, [url]):
print(f"Successfully downloaded: {model_path}")
else:
print(f"Failed to download: {model_path}")
success = False
return success
def download_all_models():
"""Download all required model files"""
print("Checking and downloading required model files...")
# Download DensePose model
print("\n[1/3] Downloading DensePose model...")
densepose_success = download_densepose_model()
if densepose_success:
print("βœ“ DensePose model ready")
else:
print("⚠ DensePose model download failed (will download on demand)")
# Download OpenPose model
print("\n[2/3] Downloading OpenPose model...")
openpose_success = download_openpose_model()
if openpose_success:
print("βœ“ OpenPose model ready")
else:
print("⚠ OpenPose model download failed (will download on demand)")
# Download Human Parsing models
print("\n[3/3] Downloading Human Parsing models...")
parsing_success = download_humanparsing_models()
if parsing_success:
print("βœ“ Human Parsing models ready")
else:
print("⚠ Human Parsing models download failed (will download on demand)")
return densepose_success and openpose_success and parsing_success
@spaces.GPU
def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop, denoise_steps,seed):
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
garm_img= garm_img.convert("RGB").resize((768,1024))
human_img_orig = dict["background"].convert("RGB")
if is_checked_crop:
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
top = (height - target_height) / 2
right = (width + target_width) / 2
bottom = (height + target_height) / 2
cropped_img = human_img_orig.crop((left, top, right, bottom))
crop_size = cropped_img.size
human_img = cropped_img.resize((768,1024))
else:
human_img = human_img_orig.resize((768,1024))
if is_checked:
keypoints = openpose_model(human_img.resize((384,512)))
model_parse, _ = parsing_model(human_img.resize((384,512)))
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
mask = mask.resize((768,1024))
else:
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
# mask = transforms.ToTensor()(mask)
# mask = mask.unsqueeze(0)
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
# DensePose λͺ¨λΈ λ‹€μš΄λ‘œλ“œ 및 경둜 μ„€μ •
densepose_model_path = './ckpt/densepose/model_final_162be9.pkl'
# λͺ¨λΈ 파일이 μ—†μœΌλ©΄ λ‹€μš΄λ‘œλ“œ μ‹œλ„
if not os.path.exists(densepose_model_path):
print("DensePose model not found, attempting to download...")
download_success = download_densepose_model()
if not download_success:
print("Failed to download DensePose model")
return None, None
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', densepose_model_path, 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
# verbosity = getattr(args, "verbosity", None)
pose_img = args.func(args,human_img_arg)
pose_img = pose_img[:,:,::-1]
pose_img = Image.fromarray(pose_img).resize((768,1024))
with torch.no_grad():
# Extract the images
with torch.cuda.amp.autocast():
with torch.no_grad():
prompt = "model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = "a photo of " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * 1
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * 1
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
images = pipe(
prompt_embeds=prompt_embeds.to(device,torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
num_inference_steps=denoise_steps,
generator=generator,
strength = 1.0,
pose_img = pose_img.to(device,torch.float16),
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
cloth = garm_tensor.to(device,torch.float16),
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image = garm_img.resize((768,1024)),
guidance_scale=2.0,
)[0]
if is_checked_crop:
out_img = images[0].resize(crop_size)
human_img_orig.paste(out_img, (int(left), int(top)))
return human_img_orig, mask_gray
else:
return images[0], mask_gray
# return images[0], mask_gray
print("\n" + "=" * 60)
print("Loading Example Images...")
print("=" * 60)
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
print(f"βœ“ Found {len(garm_list_path)} garment example images")
human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
print(f"βœ“ Found {len(human_list_path)} human example images")
# human_ex_listλ₯Ό λ‹¨μˆœν•œ 이미지 경둜 리슀트둜 λ³€κ²½ (κ·Έλ¦¬λ“œ ν‘œμ‹œλ₯Ό μœ„ν•΄)
human_ex_list = human_list_path
##default human
print("\n" + "=" * 60)
print("Creating Gradio Application Interface...")
print("=" * 60)
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
print("βœ“ Gradio Blocks created")
gr.Markdown("## DXCO : GENAI-VTON")
gr.Markdown("μž„μ„±λ‚¨, μœ€μ§€μ˜, μ‘°λ―Όμ£Ό based on IDM-VTON")
gr.Markdown("* 맨 처음 μΆ”λ‘  μ‹œ [5λΆ„] κ±Έλ¦Ό - compileκ³Ό GPU warm-up *")
gr.Markdown("ꢌμž₯ 이미지 μ‚¬μ΄μ¦ˆ - 3:4λΉ„μœ¨(384x512,768x1024)")
with gr.Row():
with gr.Column():
imgs = gr.ImageEditor(sources='upload', type="pil", label='λŒ€μƒ 이미지', interactive=True)
with gr.Row():
img_url_input = gr.Textbox(label="λŒ€μƒ 이미지 URL", placeholder="예) https://example.com/human_image.jpg")
with gr.Row():
is_checked = gr.Checkbox(label="Yes", info="μžλ™ λ§ˆμŠ€ν‚Ή",value=True)
with gr.Row():
is_checked_crop = gr.Checkbox(label="Yes", info="μžλ™ 크둭 및 리사이징",value=True)
example = gr.Examples(
inputs=imgs,
examples_per_page=10,
examples=human_ex_list
)
with gr.Column():
garm_img = gr.Image(label="μ˜μƒ 이미지", sources='upload', type="pil")
with gr.Row():
garm_url_input = gr.Textbox(label="μ˜μƒ 이미지 URL", placeholder="예) https://example.com/garment.jpg")
with gr.Row(elem_id="prompt-container"):
with gr.Row():
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
example = gr.Examples(
inputs=garm_img,
examples_per_page=8,
examples=garm_list_path)
with gr.Column():
masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
with gr.Column():
try_button = gr.Button(value="Try-on")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row():
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
# is_checked = gr.Number(value=True)
# 이미지 μ—…λ‘œλ“œ μ‹œ μ „μ²˜λ¦¬
# imgs.upload(
# fn=preprocess_image,
# inputs=imgs,
# outputs=imgs, # μ „μ²˜λ¦¬λœ 이미지λ₯Ό ImageEditor에 λ‹€μ‹œ ν‘œμ‹œ
# )
# λŒ€μƒ 이미지: URL μž…λ ₯ 처리
img_url_input.change(
fn=lambda url: process_url_image(url),
inputs=img_url_input,
outputs=imgs,
)
# μ˜μƒ 이미지: URL μž…λ ₯ 처리
garm_url_input.change(
fn=lambda url: process_url_image(url),
inputs=garm_url_input,
outputs=garm_img,
)
try_button.click(
fn=start_tryon,
inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed],
outputs=[image_out, masked_img],
api_name='tryon'
)
# GPU Warm-up μƒνƒœ ν‘œμ‹œμš© (μˆ¨κΉ€)
warmup_status = gr.Textbox(visible=False)
# μ•± λ‘œλ“œ μ‹œ GPU Warm-up μžλ™ μ‹€ν–‰ (torch.compile 첫 컴파일)
if is_compile_for_zeroGPU == True:
print("βœ“ GPU warm-up is disabled for ZeroGPU")
else:
demo.load(
fn=warmup_gpu,
inputs=None,
outputs=warmup_status,
)
print("βœ“ Gradio interface components created")
print("βœ“ Event handlers configured")
print("βœ“ GPU warm-up scheduled on app load")
print("\n" + "=" * 60)
print("Gradio Application Interface Created Successfully!")
print("=" * 60)
# DensePose λͺ¨λΈ λ‹€μš΄λ‘œλ“œ
print("\n" + "=" * 60)
print("Checking and Downloading Additional Models...")
print("=" * 60)
try:
download_all_models()
print("\nβœ“ All model files downloaded successfully.")
except Exception as e:
print(f"\n⚠ Warning: Could not download all model files: {e}")
print("The models will be downloaded when needed during inference.")
# μ•± μ‹€ν–‰
print("\n" + "=" * 60)
print("Launching Application Server...")
print("=" * 60)
if __name__ == "__main__":
try:
print("Starting GENAI-VTON application on http://0.0.0.0:7860")
print("Please wait while the server starts...")
image_blocks.launch(server_name="0.0.0.0", server_port=7860, share=False)
except Exception as e:
print(f"\n❌ Error starting the application: {e}")
print("Please check if all required dependencies are installed.")
import traceback
traceback.print_exc()