namanviber commited on
Commit
3dd595e
1 Parent(s): dd3a1e8

Upload 16 files

Browse files
Legal-LED_IN_ABS/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: nsi319/legal-led-base-16384
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
Legal-LED_IN_ABS/adapter_config.json ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "nsi319/legal-led-base-16384",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 4,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "led.encoder.layers.4.self_attn.longformer_self_attn.key",
24
+ "led.decoder.layers.1.encoder_attn.k_proj",
25
+ "led.decoder.layers.1.self_attn.v_proj",
26
+ "led.decoder.layers.2.self_attn.k_proj",
27
+ "led.encoder.layers.1.self_attn.longformer_self_attn.key",
28
+ "led.encoder.layers.2.self_attn.longformer_self_attn.value",
29
+ "led.encoder.layers.0.self_attn.longformer_self_attn.query",
30
+ "led.decoder.layers.5.encoder_attn.k_proj",
31
+ "led.encoder.layers.5.self_attn.longformer_self_attn.query",
32
+ "led.decoder.layers.5.self_attn.v_proj",
33
+ "led.encoder.layers.3.self_attn.longformer_self_attn.key",
34
+ "led.decoder.layers.3.encoder_attn.q_proj",
35
+ "led.decoder.layers.2.encoder_attn.v_proj",
36
+ "led.encoder.layers.0.self_attn.longformer_self_attn.value",
37
+ "led.decoder.layers.2.self_attn.q_proj",
38
+ "led.encoder.layers.1.self_attn.longformer_self_attn.query",
39
+ "led.decoder.layers.3.self_attn.q_proj",
40
+ "led.decoder.layers.5.encoder_attn.v_proj",
41
+ "led.decoder.layers.4.self_attn.k_proj",
42
+ "led.decoder.layers.1.self_attn.q_proj",
43
+ "led.encoder.layers.1.self_attn.longformer_self_attn.value",
44
+ "led.encoder.layers.3.self_attn.longformer_self_attn.query",
45
+ "led.encoder.layers.0.self_attn.longformer_self_attn.key",
46
+ "led.encoder.layers.4.self_attn.longformer_self_attn.query",
47
+ "led.decoder.layers.0.self_attn.k_proj",
48
+ "led.decoder.layers.2.self_attn.v_proj",
49
+ "led.decoder.layers.0.self_attn.v_proj",
50
+ "led.encoder.layers.3.self_attn.longformer_self_attn.value",
51
+ "led.encoder.layers.5.self_attn.longformer_self_attn.value",
52
+ "led.decoder.layers.4.encoder_attn.k_proj",
53
+ "led.decoder.layers.5.encoder_attn.q_proj",
54
+ "led.decoder.layers.0.encoder_attn.v_proj",
55
+ "led.encoder.layers.2.self_attn.longformer_self_attn.query",
56
+ "led.decoder.layers.0.self_attn.q_proj",
57
+ "led.decoder.layers.3.self_attn.k_proj",
58
+ "led.decoder.layers.0.encoder_attn.q_proj",
59
+ "led.decoder.layers.3.self_attn.v_proj",
60
+ "led.decoder.layers.4.encoder_attn.q_proj",
61
+ "led.decoder.layers.2.encoder_attn.k_proj",
62
+ "led.encoder.layers.4.self_attn.longformer_self_attn.value",
63
+ "led.decoder.layers.1.self_attn.k_proj",
64
+ "led.decoder.layers.1.encoder_attn.q_proj",
65
+ "led.decoder.layers.4.self_attn.q_proj",
66
+ "led.decoder.layers.4.encoder_attn.v_proj",
67
+ "led.decoder.layers.1.encoder_attn.v_proj",
68
+ "led.decoder.layers.4.self_attn.v_proj",
69
+ "led.decoder.layers.5.self_attn.q_proj",
70
+ "led.encoder.layers.2.self_attn.longformer_self_attn.key",
71
+ "led.decoder.layers.2.encoder_attn.q_proj",
72
+ "led.decoder.layers.5.self_attn.k_proj",
73
+ "led.decoder.layers.3.encoder_attn.v_proj",
74
+ "led.encoder.layers.5.self_attn.longformer_self_attn.key",
75
+ "led.decoder.layers.3.encoder_attn.k_proj",
76
+ "led.decoder.layers.0.encoder_attn.k_proj"
77
+ ],
78
+ "task_type": "SUMMARIZATION",
79
+ "use_dora": false,
80
+ "use_rslora": false
81
+ }
Legal-LED_IN_ABS/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:768d20dd4b448772f8c62f5cfc1c20494d506678aa1d68f94746956aec85fe5b
3
+ size 1342456
Legal-LED_IN_ABS/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Legal-LED_IN_ABS/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d341317be5693df2dd1d9636341166d40c8af8467051bd34cdc7d0fda452ee0
3
+ size 2745082
Legal-LED_IN_ABS/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bee791231a99ff85057b54f035f640c56d457ea6ced79092eee7bd4510f79ba
3
+ size 14244
Legal-LED_IN_ABS/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d20436381cde63e4ef4154c4facf935d7fceed96cba77d169e67689352a860ba
3
+ size 1064
Legal-LED_IN_ABS/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
Legal-LED_IN_ABS/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Legal-LED_IN_ABS/tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 16384,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "LEDTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
Legal-LED_IN_ABS/trainer_state.json ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 28.664,
3
+ "best_model_checkpoint": "results/Legal-LED/IndiaABS/exp1\\checkpoint-1757",
4
+ "epoch": 0.9997155049786629,
5
+ "eval_steps": 500,
6
+ "global_step": 1757,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "grad_norm": 5.772658348083496,
14
+ "learning_rate": 1.225e-05,
15
+ "loss": 4.2551,
16
+ "step": 50
17
+ },
18
+ {
19
+ "epoch": 0.06,
20
+ "grad_norm": 2.3984649181365967,
21
+ "learning_rate": 2.4750000000000002e-05,
22
+ "loss": 3.4607,
23
+ "step": 100
24
+ },
25
+ {
26
+ "epoch": 0.09,
27
+ "grad_norm": 1.634371042251587,
28
+ "learning_rate": 3.7250000000000004e-05,
29
+ "loss": 2.7537,
30
+ "step": 150
31
+ },
32
+ {
33
+ "epoch": 0.11,
34
+ "grad_norm": 1.7180700302124023,
35
+ "learning_rate": 4.975e-05,
36
+ "loss": 2.5124,
37
+ "step": 200
38
+ },
39
+ {
40
+ "epoch": 0.14,
41
+ "grad_norm": 1.7759343385696411,
42
+ "learning_rate": 4.842646114322415e-05,
43
+ "loss": 2.3961,
44
+ "step": 250
45
+ },
46
+ {
47
+ "epoch": 0.17,
48
+ "grad_norm": 1.5487947463989258,
49
+ "learning_rate": 4.6820809248554915e-05,
50
+ "loss": 2.373,
51
+ "step": 300
52
+ },
53
+ {
54
+ "epoch": 0.2,
55
+ "grad_norm": 1.6271101236343384,
56
+ "learning_rate": 4.521515735388568e-05,
57
+ "loss": 2.3289,
58
+ "step": 350
59
+ },
60
+ {
61
+ "epoch": 0.23,
62
+ "grad_norm": 1.7767431735992432,
63
+ "learning_rate": 4.360950545921644e-05,
64
+ "loss": 2.3136,
65
+ "step": 400
66
+ },
67
+ {
68
+ "epoch": 0.26,
69
+ "grad_norm": 1.5476394891738892,
70
+ "learning_rate": 4.2003853564547206e-05,
71
+ "loss": 2.228,
72
+ "step": 450
73
+ },
74
+ {
75
+ "epoch": 0.28,
76
+ "grad_norm": 2.2447686195373535,
77
+ "learning_rate": 4.039820166987797e-05,
78
+ "loss": 2.2193,
79
+ "step": 500
80
+ },
81
+ {
82
+ "epoch": 0.31,
83
+ "grad_norm": 2.0830910205841064,
84
+ "learning_rate": 3.879254977520873e-05,
85
+ "loss": 2.244,
86
+ "step": 550
87
+ },
88
+ {
89
+ "epoch": 0.34,
90
+ "grad_norm": 1.8925021886825562,
91
+ "learning_rate": 3.7186897880539504e-05,
92
+ "loss": 2.2185,
93
+ "step": 600
94
+ },
95
+ {
96
+ "epoch": 0.37,
97
+ "grad_norm": 1.9989118576049805,
98
+ "learning_rate": 3.558124598587027e-05,
99
+ "loss": 2.2333,
100
+ "step": 650
101
+ },
102
+ {
103
+ "epoch": 0.4,
104
+ "grad_norm": 2.6363413333892822,
105
+ "learning_rate": 3.397559409120103e-05,
106
+ "loss": 2.1538,
107
+ "step": 700
108
+ },
109
+ {
110
+ "epoch": 0.43,
111
+ "grad_norm": 2.3027186393737793,
112
+ "learning_rate": 3.2369942196531794e-05,
113
+ "loss": 2.2577,
114
+ "step": 750
115
+ },
116
+ {
117
+ "epoch": 0.46,
118
+ "grad_norm": 1.6798630952835083,
119
+ "learning_rate": 3.076429030186256e-05,
120
+ "loss": 2.203,
121
+ "step": 800
122
+ },
123
+ {
124
+ "epoch": 0.48,
125
+ "grad_norm": 2.2237415313720703,
126
+ "learning_rate": 2.915863840719332e-05,
127
+ "loss": 2.1747,
128
+ "step": 850
129
+ },
130
+ {
131
+ "epoch": 0.51,
132
+ "grad_norm": 2.019179105758667,
133
+ "learning_rate": 2.755298651252409e-05,
134
+ "loss": 2.1642,
135
+ "step": 900
136
+ },
137
+ {
138
+ "epoch": 0.54,
139
+ "grad_norm": 1.8116823434829712,
140
+ "learning_rate": 2.5947334617854852e-05,
141
+ "loss": 2.0992,
142
+ "step": 950
143
+ },
144
+ {
145
+ "epoch": 0.57,
146
+ "grad_norm": 2.7756757736206055,
147
+ "learning_rate": 2.4341682723185612e-05,
148
+ "loss": 2.073,
149
+ "step": 1000
150
+ },
151
+ {
152
+ "epoch": 0.6,
153
+ "grad_norm": 2.4382846355438232,
154
+ "learning_rate": 2.2736030828516376e-05,
155
+ "loss": 2.1295,
156
+ "step": 1050
157
+ },
158
+ {
159
+ "epoch": 0.63,
160
+ "grad_norm": 1.680977702140808,
161
+ "learning_rate": 2.1130378933847143e-05,
162
+ "loss": 2.1131,
163
+ "step": 1100
164
+ },
165
+ {
166
+ "epoch": 0.65,
167
+ "grad_norm": 2.0901172161102295,
168
+ "learning_rate": 1.9524727039177907e-05,
169
+ "loss": 2.145,
170
+ "step": 1150
171
+ },
172
+ {
173
+ "epoch": 0.68,
174
+ "grad_norm": 1.953476071357727,
175
+ "learning_rate": 1.791907514450867e-05,
176
+ "loss": 2.1414,
177
+ "step": 1200
178
+ },
179
+ {
180
+ "epoch": 0.71,
181
+ "grad_norm": 2.1726927757263184,
182
+ "learning_rate": 1.6313423249839434e-05,
183
+ "loss": 2.1293,
184
+ "step": 1250
185
+ },
186
+ {
187
+ "epoch": 0.74,
188
+ "grad_norm": 1.8229079246520996,
189
+ "learning_rate": 1.4707771355170199e-05,
190
+ "loss": 2.1369,
191
+ "step": 1300
192
+ },
193
+ {
194
+ "epoch": 0.77,
195
+ "grad_norm": 2.71445631980896,
196
+ "learning_rate": 1.3102119460500964e-05,
197
+ "loss": 2.0934,
198
+ "step": 1350
199
+ },
200
+ {
201
+ "epoch": 0.8,
202
+ "grad_norm": 2.6795523166656494,
203
+ "learning_rate": 1.1496467565831728e-05,
204
+ "loss": 2.0734,
205
+ "step": 1400
206
+ },
207
+ {
208
+ "epoch": 0.83,
209
+ "grad_norm": 2.1377625465393066,
210
+ "learning_rate": 9.890815671162493e-06,
211
+ "loss": 2.1422,
212
+ "step": 1450
213
+ },
214
+ {
215
+ "epoch": 0.85,
216
+ "grad_norm": 1.7045388221740723,
217
+ "learning_rate": 8.285163776493257e-06,
218
+ "loss": 2.0615,
219
+ "step": 1500
220
+ },
221
+ {
222
+ "epoch": 0.88,
223
+ "grad_norm": 2.001119375228882,
224
+ "learning_rate": 6.679511881824021e-06,
225
+ "loss": 2.0652,
226
+ "step": 1550
227
+ },
228
+ {
229
+ "epoch": 0.91,
230
+ "grad_norm": 2.5513315200805664,
231
+ "learning_rate": 5.0738599871547856e-06,
232
+ "loss": 2.1465,
233
+ "step": 1600
234
+ },
235
+ {
236
+ "epoch": 0.94,
237
+ "grad_norm": 1.8909486532211304,
238
+ "learning_rate": 3.468208092485549e-06,
239
+ "loss": 2.0798,
240
+ "step": 1650
241
+ },
242
+ {
243
+ "epoch": 0.97,
244
+ "grad_norm": 1.9534186124801636,
245
+ "learning_rate": 1.8625561978163134e-06,
246
+ "loss": 2.0924,
247
+ "step": 1700
248
+ },
249
+ {
250
+ "epoch": 1.0,
251
+ "grad_norm": 2.080364465713501,
252
+ "learning_rate": 2.569043031470777e-07,
253
+ "loss": 2.0598,
254
+ "step": 1750
255
+ },
256
+ {
257
+ "epoch": 1.0,
258
+ "eval_gen_len": 815.03,
259
+ "eval_loss": 2.0449941158294678,
260
+ "eval_rouge1": 55.6012,
261
+ "eval_rouge2": 28.664,
262
+ "eval_rougeL": 26.4007,
263
+ "eval_rougeLsum": 53.0454,
264
+ "eval_runtime": 14551.3385,
265
+ "eval_samples_per_second": 0.007,
266
+ "eval_steps_per_second": 0.007,
267
+ "step": 1757
268
+ }
269
+ ],
270
+ "logging_steps": 50,
271
+ "max_steps": 1757,
272
+ "num_input_tokens_seen": 0,
273
+ "num_train_epochs": 1,
274
+ "save_steps": 500,
275
+ "total_flos": 3.806868794454835e+16,
276
+ "train_batch_size": 1,
277
+ "trial_name": null,
278
+ "trial_params": null
279
+ }
Legal-LED_IN_ABS/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b887e532dd0881e53b48f5222fe9c8cb2db6be354c3d43fca9c4d476016987c1
3
+ size 5048
Legal-LED_IN_ABS/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+ from peft import PeftModel
4
+
5
+ # Loading LED IN Model
6
+ base_model = "nsi319/legal-led-base-16384"
7
+ led = AutoModelForSeq2SeqLM.from_pretrained(base_model)
8
+ adapter_model_in = f"Legal-LED_IN_ABS"
9
+ led_in = PeftModel.from_pretrained(led, adapter_model_in)
10
+ led_in_tokenizer = AutoTokenizer.from_pretrained(base_model)
11
+
12
+ # Generating Summary
13
+ def summarize(model, tokenizer, text):
14
+ input_tokenized = tokenizer.encode(text, return_tensors='pt', max_length=8192, truncation=True)
15
+ summary_ids = model.generate(input_tokenized, num_beams=4, length_penalty=0.1, min_length=32, max_length=512)
16
+ summary = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids][0]
17
+ return summary
18
+
19
+ # Reading Txt File
20
+ def read_txt_file(file):
21
+ text = file.read().decode('utf-8')
22
+ return text
23
+
24
+ st.set_page_config(page_title="Legal AI Summarizer", page_icon="img.png")
25
+ title = "Legal AI Summarizer"
26
+ col1, col2 = st.columns([1,7])
27
+ with col1:
28
+ st.image("img.png")
29
+ with col2: st.title(title)
30
+ st.write("Stuck with long legal documents? Our AI summarizer can help! Just copy-paste the text or upload a .txt file, and it will give you a quick and easy summary in plain English, so you can understand the key points without all the legalese.")
31
+
32
+ if "user_text" not in st.session_state:
33
+ st.session_state.user_text = ""
34
+
35
+ upload_file = st.file_uploader("Upload a .txt file", type="txt")
36
+
37
+ if upload_file is not None:
38
+ user_text = read_txt_file(upload_file)
39
+ else:
40
+ user_text = st.text_area("Paste your legal document here:", value=st.session_state.user_text, height=300)
41
+
42
+ if st.button("Generate Summary"):
43
+ with st.spinner("Generating summary..."):
44
+ try:
45
+ summary_text = summarize(led_in, led_in_tokenizer, user_text)
46
+ st.session_state.user_text = user_text
47
+ st.write("")
48
+ st.success(summary_text)
49
+ print(summary_text)
50
+ except Exception as e:
51
+ st.error(f"An error occurred: {e}")
img.png ADDED
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ streamlit
2
+ transformers
3
+ peft
4
+ torch