Spaces:
Sleeping
Sleeping
Update model and draw boundary
Browse files
app.py
CHANGED
@@ -10,110 +10,25 @@ import PIL
|
|
10 |
import io
|
11 |
import html
|
12 |
import time
|
13 |
-
|
14 |
|
15 |
model_file_path = 'models/bmi.h5'
|
16 |
model = tf.keras.models.load_model(model_file_path)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
# Preprocess the images for VGG16
|
19 |
def preprocess_image(img_path):
|
20 |
img = image.load_img(img_path, target_size = (224, 224))
|
21 |
img = image.img_to_array(img)
|
22 |
img = np.expand_dims(img, axis = 0)
|
23 |
-
img = preprocess_input(img)
|
24 |
return img
|
25 |
|
26 |
|
27 |
-
# function to convert OpenCV Rectangle bounding box image into base64 byte string to be overlayed on video stream
|
28 |
-
def bbox_to_bytes(bbox_array):
|
29 |
-
"""
|
30 |
-
Params:
|
31 |
-
bbox_array: Numpy array (pixels) containing rectangle to overlay on video stream.
|
32 |
-
Returns:
|
33 |
-
bytes: Base64 image byte string
|
34 |
-
"""
|
35 |
-
# convert array into PIL image
|
36 |
-
bbox_PIL = PIL.Image.fromarray(bbox_array, 'RGBA')
|
37 |
-
iobuf = io.BytesIO()
|
38 |
-
# format bbox into png for return
|
39 |
-
bbox_PIL.save(iobuf, format='png')
|
40 |
-
# format return string
|
41 |
-
bbox_bytes = 'data:image/png;base64,{}'.format((str(b64encode(iobuf.getvalue()), 'utf-8')))
|
42 |
-
|
43 |
-
return bbox_bytes
|
44 |
-
|
45 |
-
# base_model = VGGFace(model='vgg16', include_top=False, input_shape=(224, 224, 3))
|
46 |
-
# x = base_model.output
|
47 |
-
# x = GlobalAveragePooling2D()(x)
|
48 |
-
# model = Model(inputs=base_model.input, outputs=x)
|
49 |
-
|
50 |
-
# # Function to preprocess the image
|
51 |
-
# def preprocess_image(img):
|
52 |
-
# img = cv2.resize(img, (224, 224))
|
53 |
-
# img = image.img_to_array(img)
|
54 |
-
# img = np.expand_dims(img, axis=0)
|
55 |
-
# img = img[0] # Remove the extra dimension
|
56 |
-
# return img
|
57 |
-
|
58 |
-
# def extract_features(image_array):
|
59 |
-
# # img = np.squeeze(image_array, axis=0)
|
60 |
-
# img = np.expand_dims(image_array, axis=0)
|
61 |
-
# img = tf.keras.applications.resnet50.preprocess_input(img)
|
62 |
-
# features = model.predict(img,verbose=0)
|
63 |
-
# return features.flatten()
|
64 |
-
|
65 |
-
# Function to predict BMI
|
66 |
-
|
67 |
-
def draw_boundary(img):
|
68 |
-
# initialize the Haar Cascade face detection model
|
69 |
-
face_cascade = cv2.CascadeClassifier(cv2.samples.findFile(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'))
|
70 |
-
|
71 |
-
# initialze bounding box to empty
|
72 |
-
bbox = ''
|
73 |
-
count = 0
|
74 |
-
while True:
|
75 |
-
|
76 |
-
# create transparent overlay for bounding box
|
77 |
-
bbox_array = np.zeros([480,640,4], dtype=np.uint8)
|
78 |
-
|
79 |
-
# grayscale image for face detection
|
80 |
-
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
|
81 |
-
|
82 |
-
# get face region coordinates
|
83 |
-
faces = face_cascade.detectMultiScale(gray)
|
84 |
-
# get face bounding box for overlay
|
85 |
-
for (x, y, w, h) in faces:
|
86 |
-
# Extract the face region from the frame
|
87 |
-
face = img[y:y+h, x:x+w]
|
88 |
-
|
89 |
-
# Preprocess the face image
|
90 |
-
face = cv2.resize(face, (224, 224))
|
91 |
-
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
92 |
-
face = preprocess_input(face)/255.
|
93 |
-
face = np.expand_dims(face, axis=0)
|
94 |
-
|
95 |
-
# Predict BMI using the pre-trained model
|
96 |
-
bmi = model.predict(face)[0][0]
|
97 |
-
|
98 |
-
# Draw the predicted BMI on the frame
|
99 |
-
bbox_array = cv2.putText(bbox_array, f'BMI: {bmi:.2f}', (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
100 |
-
|
101 |
-
# Draw a rectangle around the face
|
102 |
-
bbox_array = cv2.rectangle(bbox_array, (x, y), (x+w, y+h), (255, 0, 0), 2)
|
103 |
-
|
104 |
-
bbox_array[:,:,3] = (bbox_array.max(axis = 2) > 0 ).astype(int) * 255
|
105 |
-
# convert overlay of bbox into bytes
|
106 |
-
bbox_bytes = bbox_to_bytes(bbox_array)
|
107 |
-
# update bbox so next frame gets new overlay
|
108 |
-
bbox = bbox_bytes
|
109 |
-
|
110 |
-
return img
|
111 |
-
|
112 |
-
def predict_bmi(img):
|
113 |
-
pre_img = preprocess_image(img)
|
114 |
-
pred = draw_boundary(pre_img)
|
115 |
-
return pred
|
116 |
-
|
117 |
def main():
|
118 |
st.title("BMI Prediction from Camera Image")
|
119 |
st.write("This app predicts the BMI of a person from an image captured using the camera.")
|
@@ -122,15 +37,15 @@ def main():
|
|
122 |
img_file_buffer = st.camera_input("Take a picture")
|
123 |
|
124 |
if img_file_buffer is not None:
|
125 |
-
#
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
st.write("
|
134 |
|
135 |
if __name__ == '__main__':
|
136 |
main()
|
|
|
10 |
import io
|
11 |
import html
|
12 |
import time
|
13 |
+
from facenet_pytorch import MTCNN
|
14 |
|
15 |
model_file_path = 'models/bmi.h5'
|
16 |
model = tf.keras.models.load_model(model_file_path)
|
17 |
|
18 |
+
mtcnn2 = MTCNN(
|
19 |
+
image_size=160, margin=40, min_face_size=20,
|
20 |
+
thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=False
|
21 |
+
)
|
22 |
+
|
23 |
# Preprocess the images for VGG16
|
24 |
def preprocess_image(img_path):
|
25 |
img = image.load_img(img_path, target_size = (224, 224))
|
26 |
img = image.img_to_array(img)
|
27 |
img = np.expand_dims(img, axis = 0)
|
28 |
+
img = preprocess_input(img)/255.
|
29 |
return img
|
30 |
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def main():
|
33 |
st.title("BMI Prediction from Camera Image")
|
34 |
st.write("This app predicts the BMI of a person from an image captured using the camera.")
|
|
|
37 |
img_file_buffer = st.camera_input("Take a picture")
|
38 |
|
39 |
if img_file_buffer is not None:
|
40 |
+
# To read image file buffer as a PIL Image:
|
41 |
+
img = Image.open(img_file_buffer)
|
42 |
+
|
43 |
+
detected_image = Image.fromarray(mtcnn2(img).numpy().transpose(1, 2, 0).astype(np.uint8))
|
44 |
+
st.image(detected_image, caption="Detected Face")
|
45 |
+
|
46 |
+
embeddings = preprocess_image(img_file_buffer)
|
47 |
+
bmi = round(model.predict(embeddings), 2) - 4
|
48 |
+
st.write(f"Your BMI is {bmi}")
|
49 |
|
50 |
if __name__ == '__main__':
|
51 |
main()
|