Spaces:
Running
Running
import gradio as gr | |
import json | |
from PIL import Image, ImageDraw | |
from ultralytics import YOLO | |
# Model Heading and Description | |
model_heading = "YOLOv11x Character" | |
description = """YOLOv11x Character Gradio demo for object detection. Upload an image or click an example image to use.""" | |
article = "<p style='text-align: center'>YOLOv11x Character is an object detection model trained on the <a href=\"http://codh.rois.ac.jp/char-shape/\">日本古典籍くずし字データセット</a>.</p>" | |
image_path= [ | |
['『源氏物語』(東京大学総合図書館所蔵).jpg', 0.25, 0.45], | |
['『源氏物語』(京都大学所蔵).jpg', 0.25, 0.45], | |
['『平家物語』(国文学研究資料館提供).jpg', 0.25, 0.45] | |
] | |
# Load YOLO model | |
model = YOLO('best.pt') | |
def get_color(score): | |
"""Returns color based on confidence score.""" | |
if score > 0.75: | |
return "blue" # 高スコアに濃い青 | |
elif score > 0.5: | |
return "deepskyblue" # 中スコアに明るい青 | |
elif score > 0.25: | |
return "lightblue" # 低スコアに薄い青 | |
else: | |
return "gray" # 非常に低いスコアにグレー | |
def draw_boxes(image_path, results): | |
# Open image | |
image = Image.open(image_path) | |
draw = ImageDraw.Draw(image) | |
# 画像の短辺に基づいて矩形の線の太さを調整 | |
min_dimension = min(image.size) # 画像の短辺を取得 | |
line_width = max(1, min_dimension // 200) # 線の太さを短辺の1%程度に設定(最小値は1) | |
# Draw boxes | |
for item in results: | |
box = item['box'] | |
# label = item['class'] | |
score = item['confidence'] | |
# Define box coordinates | |
x1, y1, x2, y2 = box["x1"], box["y1"], box["x2"], box["y2"] | |
color = get_color(score) | |
# Draw rectangle and label | |
draw.rectangle([x1, y1, x2, y2], outline=color, width=line_width) | |
# draw.text((x1, y1), f"{label} {score:.2f}", fill=color) | |
return image | |
def YOLOv11x_img_inference( | |
image: gr.Image = None, | |
conf_threshold: gr.Slider = 0.25, | |
iou_threshold: gr.Slider = 0.45, | |
): | |
""" | |
YOLOv11x inference function | |
Args: | |
image: Input image | |
conf_threshold: Confidence threshold | |
iou_threshold: IOU threshold | |
Returns: | |
Rendered image | |
JSON output | |
""" | |
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, device="cpu") | |
json_data = json.loads(results[0].tojson()) | |
# Draw boxes on image | |
result_image = draw_boxes(image, json_data) | |
return result_image, json_data | |
inputs_image = [ | |
gr.Image(type="filepath", label="Input Image"), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"), | |
] | |
outputs_image =[ | |
gr.Image(type="filepath", label="Output Image"), | |
gr.JSON(label="Output JSON") | |
] | |
demo = gr.Interface( | |
fn=YOLOv11x_img_inference, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title=model_heading, | |
description=description, | |
examples=image_path, | |
article=article, | |
cache_examples=False | |
) | |
demo.css = """ | |
.json-holder { | |
height: 300px; | |
overflow: auto; | |
} | |
""" | |
demo.launch(share=False) |