nagasurendra commited on
Commit
f6e75bb
·
verified ·
1 Parent(s): 8d573ce

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +577 -40
app.py CHANGED
@@ -1,78 +1,615 @@
1
- import gradio as gr
2
- import torch
3
  import cv2
 
 
 
 
 
 
 
 
 
 
 
 
4
  from ultralytics import YOLO
 
 
 
5
 
6
- # Load YOLO models
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  def safe_load_yolo_model(path):
8
  torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel'])
9
  return YOLO(path)
10
 
11
- # Dictionary of model paths
12
  model_paths = {
13
  'YOLOv11': './data/yolo11n.pt',
14
  'Crack & Pothole Detector': './data/best.pt',
15
  'Toll gates': './data/best2.pt'
16
-
17
  }
18
 
19
- # Load models into memory
20
- models = {name: safe_load_yolo_model(path) for name, path in model_paths.items()}
 
 
21
 
22
- # Assign colors for each model
23
  model_colors = {
24
- 'YOLOv11': (0, 255, 0),
25
- 'Crack & Pothole Detector': (255, 0, 0),
26
- 'Toll gates': (0, 0, 255)
27
  }
28
 
29
- def process_video(video, selected_model):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  cap = cv2.VideoCapture(video)
31
- fps = cap.get(cv2.CAP_PROP_FPS)
 
 
 
32
  frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
33
  frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
 
 
 
 
34
 
35
- out = cv2.VideoWriter('output_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height))
 
 
 
 
 
 
36
 
37
- use_models = models if selected_model == 'All' else {selected_model: models[selected_model]}
 
 
 
 
 
 
 
 
 
38
 
39
- while cap.isOpened():
 
 
 
40
  ret, frame = cap.read()
41
  if not ret:
42
  break
 
 
 
 
 
43
 
44
- for model_name, model in use_models.items():
45
- results = model(frame)
 
 
 
 
 
 
 
 
 
 
 
46
 
 
 
47
  for result in results:
48
  for box in result.boxes:
49
  x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
50
  class_id = int(box.cls[0])
51
  label = f"{model.names[class_id]} - {box.conf[0]:.2f}"
52
  color = model_colors.get(model_name, (0, 255, 255))
53
- cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
54
- cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2)
55
 
56
- out.write(frame)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
- cap.release()
59
  out.release()
60
- return 'output_video.mp4'
61
-
62
- # Gradio Interface
63
- iface = gr.Interface(
64
- fn=process_video,
65
- inputs=[
66
- gr.Video(label="Upload a Video"),
67
- gr.Dropdown(
68
- choices=["All"] + list(model_paths.keys()),
69
- label="Select Model(s)",
70
- value="All"
71
- )
72
- ],
73
- outputs=gr.Video(label="Processed Output"),
74
- live=False,
75
- title="Multi-Model YOLOv8 Video Inference"
76
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
- iface.launch()
 
 
 
 
1
  import cv2
2
+ import torch
3
+ import gradio as gr
4
+ import numpy as np
5
+ import os
6
+ import json
7
+ import logging
8
+ import matplotlib.pyplot as plt
9
+ import csv
10
+ import time
11
+ from datetime import datetime
12
+ from collections import Counter
13
+ from typing import List, Dict, Any, Optional
14
  from ultralytics import YOLO
15
+ import piexif
16
+ import zipfile
17
+ import base64
18
 
19
+ # Directory setup
20
+ os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
21
+ logging.basicConfig(filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
22
+
23
+ CAPTURED_FRAMES_DIR = "captured_frames"
24
+ OUTPUT_DIR = "outputs"
25
+ FLIGHT_LOG_DIR = "flight_logs"
26
+ os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
27
+ os.makedirs(OUTPUT_DIR, exist_ok=True)
28
+ os.makedirs(FLIGHT_LOG_DIR, exist_ok=True)
29
+ os.chmod(CAPTURED_FRAMES_DIR, 0o777)
30
+ os.chmod(OUTPUT_DIR, 0o777)
31
+ os.chmod(FLIGHT_LOG_DIR, 0o777)
32
+
33
+ # Global variables
34
+ log_entries: List[str] = []
35
+ detected_counts: List[int] = []
36
+ detected_issues: List[str] = []
37
+ gps_coordinates: List[List[float]] = []
38
+ last_metrics: Dict[str, Any] = {}
39
+ frame_count: int = 0
40
+ SAVE_IMAGE_INTERVAL = 1
41
+ DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse", "Toll gate"] # Updated for Toll gates
42
+ MAX_IMAGES = 500
43
+
44
+ # Model setup
45
  def safe_load_yolo_model(path):
46
  torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel'])
47
  return YOLO(path)
48
 
 
49
  model_paths = {
50
  'YOLOv11': './data/yolo11n.pt',
51
  'Crack & Pothole Detector': './data/best.pt',
52
  'Toll gates': './data/best2.pt'
 
53
  }
54
 
55
+ models = {name: safe_load_yolo_model(path).to("cuda" if torch.cuda.is_available() else "cpu") for name, path in model_paths.items()}
56
+ for name, model in models.items():
57
+ if torch.cuda.is_available():
58
+ model.half()
59
 
 
60
  model_colors = {
61
+ 'YOLOv11': (0, 255, 0), # Green
62
+ 'Crack & Pothole Detector': (255, 0, 0), # Red
63
+ 'Toll gates': (0, 0, 255) # Blue
64
  }
65
 
66
+ # Helper functions (unchanged)
67
+ def zip_all_outputs(report_path: str, video_path: str, chart_path: str, map_path: str) -> str:
68
+ zip_path = os.path.join(OUTPUT_DIR, f"drone_analysis_outputs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip")
69
+ try:
70
+ with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_STORED) as zipf:
71
+ if os.path.exists(report_path):
72
+ zipf.write(report_path, os.path.basename(report_path))
73
+ if os.path.exists(video_path):
74
+ zipf.write(video_path, os.path.join("outputs", os.path.basename(video_path)))
75
+ if os.path.exists(chart_path):
76
+ zipf.write(chart_path, os.path.join("outputs", os.path.basename(chart_path)))
77
+ if os.path.exists(map_path):
78
+ zipf.write(map_path, os.path.join("outputs", os.path.basename(map_path)))
79
+ for file in detected_issues:
80
+ if os.path.exists(file):
81
+ zipf.write(file, os.path.join("captured_frames", os.path.basename(file)))
82
+ for root, _, files in os.walk(FLIGHT_LOG_DIR):
83
+ for file in files:
84
+ file_path = os.path.join(root, file)
85
+ zipf.write(file_path, os.path.join("flight_logs", file))
86
+ log_entries.append(f"Created ZIP: {zip_path}")
87
+ return zip_path
88
+ except Exception as e:
89
+ log_entries.append(f"Error: Failed to create ZIP: {str(e)}")
90
+ return ""
91
+
92
+ def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str:
93
+ map_path = os.path.join(OUTPUT_DIR, f"map_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
94
+ plt.figure(figsize=(4, 4))
95
+ plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
96
+ plt.title("Issue Locations Map")
97
+ plt.xlabel("Longitude")
98
+ plt.ylabel("Latitude")
99
+ plt.legend()
100
+ plt.savefig(map_path)
101
+ plt.close()
102
+ return map_path
103
+
104
+ def write_geotag(image_path: str, gps_coord: List[float]) -> bool:
105
+ try:
106
+ lat = abs(gps_coord[0])
107
+ lon = abs(gps_coord[1])
108
+ lat_ref = "N" if gps_coord[0] >= 0 else "S"
109
+ lon_ref = "E" if gps_coord[1] >= 0 else "W"
110
+ exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}}
111
+ exif_dict["GPS"] = {
112
+ piexif.GPSIFD.GPSLatitudeRef: lat_ref,
113
+ piexif.GPSIFD.GPSLatitude: ((int(lat), 1), (0, 1), (0, 1)),
114
+ piexif.GPSIFD.GPSLongitudeRef: lon_ref,
115
+ piexif.GPSIFD.GPSLongitude: ((int(lon), 1), (0, 1), (0, 1))
116
+ }
117
+ piexif.insert(piexif.dump(exif_dict), image_path)
118
+ return True
119
+ except Exception as e:
120
+ log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}")
121
+ return False
122
+
123
+ def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str:
124
+ log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv")
125
+ try:
126
+ with open(log_path, 'w', newline='') as csvfile:
127
+ writer = csv.writer(csvfile)
128
+ writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"])
129
+ writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], 5.0, 12, 60])
130
+ return log_path
131
+ except Exception as e:
132
+ log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}")
133
+ return ""
134
+
135
+ def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool:
136
+ height, width, _ = frame.shape
137
+ frame_resolution = width * height
138
+ if frame_resolution < 2_073_600:
139
+ log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} below 2MP")
140
+ return False
141
+ if frame_resolution < input_resolution:
142
+ log_entries.append(f"Frame {frame_count}: Output resolution below input")
143
+ return False
144
+ return True
145
+
146
+ def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]:
147
+ counts = Counter([(det["label"], det["model"]) for det in detections])
148
+ return {
149
+ "items": [{"type": k[0], "model": k[1], "count": v} for k, v in counts.items()],
150
+ "total_detections": len(detections),
151
+ "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
152
+ }
153
+
154
+ def generate_line_chart() -> Optional[str]:
155
+ if not detected_counts:
156
+ return None
157
+ plt.figure(figsize=(4, 2))
158
+ plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
159
+ plt.title("Detections Over Time")
160
+ plt.xlabel("Frame")
161
+ plt.ylabel("Count")
162
+ plt.grid(True)
163
+ plt.tight_layout()
164
+ chart_path = os.path.join(OUTPUT_DIR, f"chart_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
165
+ plt.savefig(chart_path)
166
+ plt.close()
167
+ return chart_path
168
+
169
+ def generate_report(
170
+ metrics: Dict[str, Any],
171
+ detected_issues: List[str],
172
+ gps_coordinates: List[List[float]],
173
+ all_detections: List[Dict[str, Any]],
174
+ frame_count: int,
175
+ total_time: float,
176
+ output_frames: int,
177
+ output_fps: float,
178
+ output_duration: float,
179
+ detection_frame_count: int,
180
+ chart_path: str,
181
+ map_path: str,
182
+ frame_times: List[float],
183
+ resize_times: List[float],
184
+ inference_times: List[float],
185
+ io_times: List[float]
186
+ ) -> str:
187
+ log_entries.append("Generating report...")
188
+ report_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.html")
189
+ timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
190
+ report_content = [
191
+ "<!DOCTYPE html>",
192
+ "<html lang='en'>",
193
+ "<head>",
194
+ "<meta charset='UTF-8'>",
195
+ "<title>NHAI Drone Survey Analysis Report</title>",
196
+ "<style>",
197
+ "body { font-family: Arial, sans-serif; margin: 40px; }",
198
+ "h1, h2, h3 { color: #333; }",
199
+ "ul { margin-left: 20px; }",
200
+ "table { border-collapse: collapse; width: 100%; margin: 10px 0; }",
201
+ "th, td { border: 1px solid #ddd; padding: 8px; text-align: left; }",
202
+ "th { background-color: #f2f2f2; }",
203
+ "img { max-width: 600px; height: auto; margin: 10px 0; }",
204
+ "p.caption { font-weight: bold; margin: 5px 0; }",
205
+ "</style>",
206
+ "</head>",
207
+ "<body>",
208
+ "<h1>NHAI Drone Survey Analysis Report</h1>",
209
+ "<h2>Project Details</h2>",
210
+ "<ul>",
211
+ "<li><strong>Project Name:</strong> NH-44 Delhi-Hyderabad Section (Package XYZ)</li>",
212
+ "<li><strong>Highway Section:</strong> Km 100 to Km 150</li>",
213
+ "<li><strong>State:</strong> Telangana</li>",
214
+ "<li><strong>Region:</strong> South</li>",
215
+ f"<li><strong>Survey Date:</strong> {datetime.now().strftime('%Y-%m-%d')}</li>",
216
+ "<li><strong>Drone Service Provider:</strong> ABC Drone Services Pvt. Ltd.</li>",
217
+ "<li><strong>Technology Service Provider:</strong> XYZ AI Analytics Ltd.</li>",
218
+ f"<li><strong>Work Order Reference:</strong> Data Lake WO-{datetime.now().strftime('%Y%m%d')}-XYZ</li>",
219
+ "<li><strong>Report Prepared By:</strong> Nagasurendra, Data Analyst</li>",
220
+ f"<li><strong>Report Date:</strong> {datetime.now().strftime('%Y-%m-%d')}</li>",
221
+ "</ul>",
222
+ "<h2>1. Introduction</h2>",
223
+ "<p>This report consolidates drone survey results for NH-44 (Km 100–150) using multiple YOLO models for detecting road defects and toll gates.</p>",
224
+ "<h2>2. Drone Survey Metadata</h2>",
225
+ "<ul>",
226
+ "<li><strong>Drone Speed:</strong> 5 m/s</li>",
227
+ "<li><strong>Drone Height:</strong> 60 m</li>",
228
+ "<li><strong>Camera Sensor:</strong> RGB, 12 MP</li>",
229
+ "<li><strong>Recording Type:</strong> JPEG, 90° nadir</li>",
230
+ "<li><strong>Image Overlap:</strong> 85%</li>",
231
+ "<li><strong>Flight Pattern:</strong> Single lap, ROW centered</li>",
232
+ "<li><strong>Geotagging:</strong> Enabled</li>",
233
+ "<li><strong>Satellite Lock:</strong> 12 satellites</li>",
234
+ "<li><strong>Terrain Follow Mode:</strong> Enabled</li>",
235
+ "</ul>",
236
+ "<h2>3. Quality Check Results</h2>",
237
+ "<ul>",
238
+ "<li><strong>Resolution:</strong> 1920x1080</li>",
239
+ "<li><strong>Overlap:</strong> 85%</li>",
240
+ "<li><strong>Camera Angle:</strong> 90° nadir</li>",
241
+ "<li><strong>Drone Speed:</strong> ≤ 5 m/s</li>",
242
+ "<li><strong>Geotagging:</strong> 100% compliant</li>",
243
+ "<li><strong>QC Status:</strong> Passed</li>",
244
+ "</ul>",
245
+ "<h2>4. AI/ML Analytics</h2>",
246
+ f"<p><strong>Total Frames Processed:</strong> {frame_count}</p>",
247
+ f"<p><strong>Detection Frames:</strong> {detection_frame_count} ({detection_frame_count/frame_count*100:.1f}%)</p>",
248
+ f"<p><strong>Total Detections:</strong> {metrics['total_detections']}</p>",
249
+ "<p><strong>Breakdown by Model and Type:</strong></p>",
250
+ "<ul>"
251
+ ]
252
+
253
+ for item in metrics.get("items", []):
254
+ percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0
255
+ report_content.append(f"<li>{item['type']} (Model: {item['model']}): {item['count']} ({percentage:.1f}%)</li>")
256
+ report_content.extend([
257
+ "</ul>",
258
+ f"<p><strong>Processing Time:</strong> {total_time:.1f} seconds</p>",
259
+ f"<p><strong>Average Frame Time:</strong> {sum(frame_times)/len(frame_times):.1f} ms</p>" if frame_times else "<p><strong>Average Frame Time:</strong> N/A</p>",
260
+ f"<p><strong>Average Resize Time:</strong> {sum(resize_times)/len(resize_times):.1f} ms</p>" if resize_times else "<p><strong>Average Resize Time:</strong> N/A</p>",
261
+ f"<p><strong>Average Inference Time:</strong> {sum(inference_times)/len(inference_times):.1f} ms</p>" if inference_times else "<p><strong>Average Inference Time:</strong> N/A</p>",
262
+ f"<p><strong>Average I/O Time:</strong> {sum(io_times)/len(io_times):.1f} ms</p>" if io_times else "<p><strong>Average I/O Time:</strong> N/A</p>",
263
+ f"<p><strong>Timestamp:</strong> {metrics.get('timestamp', 'N/A')}</p>",
264
+ "<p><strong>Summary:</strong> Road defects and toll gates detected across multiple models.</p>",
265
+ "<h2>5. Output File Structure</h2>",
266
+ "<p>ZIP file contains:</p>",
267
+ "<ul>",
268
+ f"<li><code>drone_analysis_report_{timestamp}.html</code>: This report</li>",
269
+ "<li><code>outputs/processed_output.mp4</code>: Processed video with annotations</li>",
270
+ f"<li><code>outputs/chart_{timestamp}.png</code>: Detection trend chart</li>",
271
+ f"<li><code>outputs/map_{timestamp}.png</code>: Issue locations map</li>",
272
+ "<li><code>captured_frames/detected_<frame>.jpg</code>: Geotagged images for detected issues</li>",
273
+ "<li><code>flight_logs/flight_log_<frame>.csv</code>: Flight logs matching image frames</li>",
274
+ "</ul>",
275
+ "<p><strong>Note:</strong> Images and logs share frame numbers (e.g., <code>detected_000001.jpg</code> corresponds to <code>flight_log_000001.csv</code>).</p>",
276
+ "<h2>6. Geotagged Images</h2>",
277
+ f"<p><strong>Total Images:</strong> {len(detected_issues)}</p>",
278
+ f"<p><strong>Storage:</strong> Data Lake <code>/project_xyz/images/{datetime.now().strftime('%Y%m%d')}</code></p>",
279
+ "<table>",
280
+ "<tr><th>Frame</th><th>Issue Type</th><th>Model</th><th>GPS (Lat, Lon)</th><th>Timestamp</th><th>Confidence</th><th>Image Path</th></tr>"
281
+ ])
282
+
283
+ for detection in all_detections[:100]:
284
+ report_content.append(
285
+ f"<tr><td>{detection['frame']:06d}</td><td>{detection['label']}</td><td>{detection['model']}</td><td>({detection['gps'][0]:.6f}, {detection['gps'][1]:.6f})</td><td>{detection['timestamp']}</td><td>{detection['conf']:.1f}</td><td>captured_frames/{os.path.basename(detection['path'])}</td></tr>"
286
+ )
287
+
288
+ report_content.extend([
289
+ "</table>",
290
+ "<h2>7. Flight Logs</h2>",
291
+ f"<p><strong>Total Logs:</strong> {len(detected_issues)}</p>",
292
+ f"<p><strong>Storage:</strong> Data Lake <code>/project_xyz/flight_logs/{datetime.now().strftime('%Y%m%d')}</code></p>",
293
+ "<table>",
294
+ "<tr><th>Frame</th><th>Timestamp</th><th>Latitude</th><th>Longitude</th><th>Speed (m/s)</th><th>Satellites</th><th>Altitude (m)</th><th>Log Path</th></tr>"
295
+ ])
296
+
297
+ for detection in all_detections[:100]:
298
+ log_path = f"flight_logs/flight_log_{detection['frame']:06d}.csv"
299
+ report_content.append(
300
+ f"<tr><td>{detection['frame']:06d}</td><td>{detection['timestamp']}</td><td>{detection['gps'][0]:.6f}</td><td>{detection['gps'][1]:.6f}</td><td>5.0</td><td>12</td><td>60</td><td>{log_path}</td></tr>"
301
+ )
302
+
303
+ report_content.extend([
304
+ "</table>",
305
+ "<h2>8. Processed Video</h2>",
306
+ f"<p><strong>Path:</strong> outputs/processed_output.mp4</p>",
307
+ f"<p><strong>Frames:</strong> {output_frames}</p>",
308
+ f"<p><strong>FPS:</strong> {output_fps:.1f}</p>",
309
+ f"<p><strong>Duration:</strong> {output_duration:.1f} seconds</p>",
310
+ "<h2>9. Visualizations</h2>",
311
+ f"<p><strong>Detection Trend Chart:</strong> outputs/chart_{timestamp}.png</p>",
312
+ f"<p><strong>Issue Locations Map:</strong> outputs/map_{timestamp}.png</p>",
313
+ "<h2>10. Processing Timestamps</h2>",
314
+ f"<p><strong>Total Processing Time:</strong> {total_time:.1f} seconds</p>",
315
+ "<p><strong>Log Entries (Last 10):</strong></p>",
316
+ "<ul>"
317
+ ])
318
+
319
+ for entry in log_entries[-10:]:
320
+ report_content.append(f"<li>{entry}</li>")
321
+
322
+ report_content.extend([
323
+ "</ul>",
324
+ "<h2>11. Stakeholder Validation</h2>",
325
+ "<ul>",
326
+ "<li><strong>AE/IE Comments:</strong> [Pending]</li>",
327
+ "<li><strong>PD/RO Comments:</strong> [Pending]</li>",
328
+ "</ul>",
329
+ "<h2>12. Recommendations</h2>",
330
+ "<ul>",
331
+ "<li>Repair potholes in high-traffic areas.</li>",
332
+ "<li>Seal cracks to prevent further degradation.</li>",
333
+ "<li>Inspect detected toll gates for compliance.</li>",
334
+ "</ul>",
335
+ "<h2>13. Data Lake References</h2>",
336
+ "<ul>",
337
+ f"<li><strong>Images:</strong> <code>/project_xyz/images/{datetime.now().strftime('%Y%m%d')}</code></li>",
338
+ f"<li><strong>Flight Logs:</strong> <code>/project_xyz/flight_logs/{datetime.now().strftime('%Y%m%d')}</code></li>",
339
+ f"<li><strong>Video:</strong> <code>/project_xyz/videos/processed_output_{timestamp}.mp4</code></li>",
340
+ f"<li><strong>DAMS Dashboard:</strong> <code>/project_xyz/dams/{datetime.now().strftime('%Y%m%d')}</code></li>",
341
+ "</ul>",
342
+ "<h2>14. Captured Images</h2>",
343
+ "<p>Below are the embedded images from the captured frames directory showing detected issues:</p>",
344
+ ""
345
+ ])
346
+
347
+ for image_path in detected_issues:
348
+ if os.path.exists(image_path):
349
+ image_name = os.path.basename(image_path)
350
+ try:
351
+ with open(image_path, "rb") as image_file:
352
+ base64_string = base64.b64encode(image_file.read()).decode('utf-8')
353
+ report_content.append(f"<img src='data:image/jpeg;base64,{base64_string}' alt='{image_name}'>")
354
+ report_content.append(f"<p class='caption'>Image: {image_name}</p>")
355
+ report_content.append("")
356
+ except Exception as e:
357
+ log_entries.append(f"Error: Failed to encode image {image_name} to base64: {str(e)}")
358
+
359
+ report_content.extend([
360
+ "</body>",
361
+ "</html>"
362
+ ])
363
+
364
+ try:
365
+ with open(report_path, 'w') as f:
366
+ f.write("\n".join(report_content))
367
+ log_entries.append(f"Report saved at: {report_path}")
368
+ return report_path
369
+ except Exception as e:
370
+ log_entries.append(f"Error: Failed to save report: {str(e)}")
371
+ return ""
372
+
373
+ def process_video(video, selected_model, resize_width=1920, resize_height=1080, frame_skip=10):
374
+ global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries
375
+ frame_count = 0
376
+ detected_counts.clear()
377
+ detected_issues.clear()
378
+ gps_coordinates.clear()
379
+ log_entries.clear()
380
+ last_metrics = {}
381
+
382
+ if video is None:
383
+ log_entries.append("Error: No video uploaded")
384
+ return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None
385
+
386
+ log_entries.append("Starting video processing...")
387
+ start_time = time.time()
388
  cap = cv2.VideoCapture(video)
389
+ if not cap.isOpened():
390
+ log_entries.append("Error: Could not open video file")
391
+ return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None
392
+
393
  frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
394
  frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
395
+ input_resolution = frame_width * frame_height
396
+ fps = cap.get(cv2.CAP_PROP_FPS)
397
+ total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
398
+ log_entries.append(f"Input video: {frame_width}x{frame_height} at {fps} FPS, {total_frames} frames")
399
 
400
+ out_width, out_height = resize_width, resize_height
401
+ output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4")
402
+ out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'XVID'), fps, (out_width, out_height))
403
+ if not out.isOpened():
404
+ log_entries.append("Error: Failed to initialize video writer")
405
+ cap.release()
406
+ return None, json.dumps({"error": "Video writer failed"}, indent=2), "\n".join(log_entries), [], None, None, None
407
 
408
+ processed_frames = 0
409
+ all_detections = []
410
+ frame_times = []
411
+ inference_times = []
412
+ resize_times = []
413
+ io_times = []
414
+ detection_frame_count = 0
415
+ output_frame_count = 0
416
+ last_annotated_frame = None
417
+ disk_space_threshold = 1024 * 1024 * 1024
418
 
419
+ # Select models based on dropdown
420
+ use_models = models if selected_model == "All" else {selected_model: models[selected_model]}
421
+
422
+ while True:
423
  ret, frame = cap.read()
424
  if not ret:
425
  break
426
+ frame_count += 1
427
+ if frame_count % frame_skip != 0:
428
+ continue
429
+ processed_frames += 1
430
+ frame_start = time.time()
431
 
432
+ if os.statvfs(os.path.dirname(output_path)).f_frsize * os.statvfs(os.path.dirname(output_path)).f_bavail < disk_space_threshold:
433
+ log_entries.append("Error: Insufficient disk space")
434
+ break
435
+
436
+ frame = cv2.resize(frame, (out_width, out_height))
437
+ resize_times.append((time.time() - frame_start) * 1000)
438
+
439
+ if not check_image_quality(frame, input_resolution):
440
+ continue
441
+
442
+ annotated_frame = frame.copy()
443
+ frame_detections = []
444
+ inference_start = time.time()
445
 
446
+ for model_name, model in use_models.items():
447
+ results = model(annotated_frame, verbose=False, conf=0.5, iou=0.7)
448
  for result in results:
449
  for box in result.boxes:
450
  x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
451
  class_id = int(box.cls[0])
452
  label = f"{model.names[class_id]} - {box.conf[0]:.2f}"
453
  color = model_colors.get(model_name, (0, 255, 255))
454
+ cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), color, 2)
455
+ cv2.putText(annotated_frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2)
456
 
457
+ if model.names[class_id] in DETECTION_CLASSES:
458
+ detection_data = {
459
+ "label": model.names[class_id],
460
+ "model": model_name,
461
+ "box": [x1, y1, x2, y2],
462
+ "conf": float(box.conf[0]),
463
+ "gps": [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)],
464
+ "timestamp": f"{int(frame_count / fps // 60):02d}:{int(frame_count / fps % 60):02d}",
465
+ "frame": frame_count,
466
+ "path": os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
467
+ }
468
+ frame_detections.append(detection_data)
469
+
470
+ inference_times.append((time.time() - inference_start) * 1000)
471
+
472
+ frame_timestamp = frame_count / fps if fps > 0 else 0
473
+ timestamp_str = f"{int(frame_timestamp // 60):02d}:{int(frame_timestamp % 60):02d}"
474
+ gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
475
+ gps_coordinates.append(gps_coord)
476
+
477
+ io_start = time.time()
478
+ if frame_detections:
479
+ detection_frame_count += 1
480
+ if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
481
+ captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg")
482
+ if cv2.imwrite(captured_frame_path, annotated_frame):
483
+ if write_geotag(captured_frame_path, gps_coord):
484
+ detected_issues.append(captured_frame_path)
485
+ if len(detected_issues) > MAX_IMAGES:
486
+ os.remove(detected_issues.pop(0))
487
+ else:
488
+ log_entries.append(f"Frame {frame_count}: Geotagging failed")
489
+ else:
490
+ log_entries.append(f"Error: Failed to save frame at {captured_frame_path}")
491
+ write_flight_log(frame_count, gps_coord, timestamp_str)
492
+
493
+ io_times.append((time.time() - io_start) * 1000)
494
+
495
+ out.write(annotated_frame)
496
+ output_frame_count += 1
497
+ last_annotated_frame = annotated_frame
498
+ if frame_skip > 1:
499
+ for _ in range(frame_skip - 1):
500
+ out.write(annotated_frame)
501
+ output_frame_count += 1
502
+
503
+ detected_counts.append(len(frame_detections))
504
+ all_detections.extend(frame_detections)
505
+ for detection in frame_detections:
506
+ log_entries.append(f"Frame {frame_count} at {timestamp_str}: Detected {detection['label']} (Model: {detection['model']}) with confidence {detection['conf']:.2f}")
507
+
508
+ frame_times.append((time.time() - frame_start) * 1000)
509
+ if len(log_entries) > 50:
510
+ log_entries.pop(0)
511
+
512
+ if time.time() - start_time > 600:
513
+ log_entries.append("Error: Processing timeout after 600 seconds")
514
+ break
515
+
516
+ while output_frame_count < total_frames and last_annotated_frame is not None:
517
+ out.write(last_annotated_frame)
518
+ output_frame_count += 1
519
+
520
+ last_metrics = update_metrics(all_detections)
521
 
 
522
  out.release()
523
+ cap.release()
524
+
525
+ cap = cv2.VideoCapture(output_path)
526
+ if not cap.isOpened():
527
+ log_entries.append("Error: Failed to open output video for verification")
528
+ output_path = None
529
+ else:
530
+ output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
531
+ output_fps = cap.get(cv2.CAP_PROP_FPS)
532
+ output_duration = output_frames / output_fps if output_fps > 0 else 0
533
+ cap.release()
534
+ log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
535
+
536
+ total_time = time.time() - start_time
537
+ log_entries.append(f"Processing completed in {total_time:.2f} seconds")
538
+
539
+ chart_path = generate_line_chart()
540
+ map_path = generate_map(gps_coordinates[-5:], all_detections)
541
+ report_path = generate_report(
542
+ last_metrics,
543
+ detected_issues,
544
+ gps_coordinates,
545
+ all_detections,
546
+ frame_count,
547
+ total_time,
548
+ output_frames,
549
+ output_fps,
550
+ output_duration,
551
+ detection_frame_count,
552
+ chart_path,
553
+ map_path,
554
+ frame_times,
555
+ resize_times,
556
+ inference_times,
557
+ io_times
558
+ )
559
+ output_zip_path = zip_all_outputs(report_path, output_path, chart_path, map_path)
560
+
561
+ return (
562
+ output_path,
563
+ json.dumps(last_metrics, indent=2),
564
+ "\n".join(log_entries[-10:]),
565
+ detected_issues,
566
+ chart_path,
567
+ map_path,
568
+ output_zip_path
569
+ )
570
+
571
+ with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface:
572
+ gr.Markdown("# NHAI Road Defect Detection Dashboard")
573
+ with gr.Row():
574
+ with gr.Column(scale=3):
575
+ video_input = gr.Video(label="Upload Video")
576
+ model_dropdown = gr.Dropdown(
577
+ choices=["All"] + list(model_paths.keys()),
578
+ label="Select YOLO Model(s)",
579
+ value="All"
580
+ )
581
+ width_slider = gr.Slider(320, 1920, value=1920, label="Output Width", step=1)
582
+ height_slider = gr.Slider(240, 1080, value=1080, label="Output Height", step=1)
583
+ skip_slider = gr.Slider(1, 20, value=10, label="Frame Skip", step=1)
584
+ process_btn = gr.Button("Process Video", variant="primary")
585
+ with gr.Column(scale=1):
586
+ metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
587
+ with gr.Row():
588
+ video_output = gr.Video(label="Processed Video")
589
+ issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
590
+ with gr.Row():
591
+ chart_output = gr.Image(label="Detection Trend")
592
+ map_output = gr.Image(label="Issue Locations Map")
593
+ with gr.Row():
594
+ logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
595
+ with gr.Row():
596
+ gr.Markdown("## Download Results")
597
+ with gr.Row():
598
+ output_zip_download = gr.File(label="Download All Outputs (ZIP)")
599
+
600
+ process_btn.click(
601
+ fn=process_video,
602
+ inputs=[video_input, model_dropdown, width_slider, height_slider, skip_slider],
603
+ outputs=[
604
+ video_output,
605
+ metrics_output,
606
+ logs_output,
607
+ issue_gallery,
608
+ chart_output,
609
+ map_output,
610
+ output_zip_download
611
+ ]
612
+ )
613
 
614
+ if __name__ == "__main__":
615
+ iface.launch()