Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
import gradio as gr | |
import numpy as np | |
import os | |
import json | |
import logging | |
import matplotlib.pyplot as plt | |
import csv | |
import time | |
from datetime import datetime | |
from collections import Counter | |
from typing import List, Dict, Any, Optional | |
from ultralytics import YOLO | |
import piexif | |
import zipfile | |
import base64 | |
# Directory setup | |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics" | |
logging.basicConfig(filename="app.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
CAPTURED_FRAMES_DIR = "captured_frames" | |
OUTPUT_DIR = "outputs" | |
FLIGHT_LOG_DIR = "flight_logs" | |
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True) | |
os.makedirs(OUTPUT_DIR, exist_ok=True) | |
os.makedirs(FLIGHT_LOG_DIR, exist_ok=True) | |
os.chmod(CAPTURED_FRAMES_DIR, 0o777) | |
os.chmod(OUTPUT_DIR, 0o777) | |
os.chmod(FLIGHT_LOG_DIR, 0o777) | |
# Global variables | |
log_entries: List[str] = [] | |
detected_counts: List[int] = [] | |
detected_issues: List[str] = [] | |
gps_coordinates: List[List[float]] = [] | |
last_metrics: Dict[str, Any] = {} | |
frame_count: int = 0 | |
SAVE_IMAGE_INTERVAL = 1 | |
MAX_IMAGES = 500 | |
# Model setup | |
def safe_load_yolo_model(path): | |
torch.serialization.add_safe_globals([torch, 'ultralytics.nn.tasks.DetectionModel']) | |
return YOLO(path) | |
model_paths = { | |
'YOLOv11': './data/yolo11n.pt', | |
'Crack & Pothole Detector': './data/pothole.pt', | |
'Toll gates': './data/tollgate.pt', | |
'Railway Bridges': './data/bridges.pt' | |
} | |
models = {name: safe_load_yolo_model(path).to("cuda" if torch.cuda.is_available() else "cpu") for name, path in model_paths.items()} | |
for name, model in models.items(): | |
if torch.cuda.is_available(): | |
model.half() | |
model_colors = { | |
'YOLOv11': (0, 255, 0), # Green | |
'Crack & Pothole Detector': (255, 0, 0), # Red | |
'Toll gates': (0, 0, 255), # Blue | |
'Railway Bridges': (0, 255, 255) # Yellow | |
} | |
# Helper functions | |
def zip_all_outputs(report_path: str, video_path: str, chart_path: str, map_path: str) -> str: | |
zip_path = os.path.join(OUTPUT_DIR, f"drone_analysis_outputs_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip") | |
try: | |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_STORED) as zipf: | |
if os.path.exists(report_path): | |
zipf.write(report_path, os.path.basename(report_path)) | |
if os.path.exists(video_path): | |
zipf.write(video_path, os.path.join("outputs", os.path.basename(video_path))) | |
if os.path.exists(chart_path): | |
zipf.write(chart_path, os.path.join("outputs", os.path.basename(chart_path))) | |
if os.path.exists(map_path): | |
zipf.write(map_path, os.path.join("outputs", os.path.basename(map_path))) | |
for file in detected_issues: | |
if os.path.exists(file): | |
zipf.write(file, os.path.join("captured_frames", os.path.basename(file))) | |
for root, _, files in os.walk(FLIGHT_LOG_DIR): | |
for file in files: | |
file_path = os.path.join(root, file) | |
zipf.write(file_path, os.path.join("flight_logs", file)) | |
log_entries.append(f"Created ZIP: {zip_path}") | |
return zip_path | |
except Exception as e: | |
log_entries.append(f"Error: Failed to create ZIP: {str(e)}") | |
return "" | |
def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) -> str: | |
map_path = os.path.join(OUTPUT_DIR, f"map_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png") | |
plt.figure(figsize=(4, 4)) | |
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points') | |
plt.title("Issue Locations Map") | |
plt.xlabel("Longitude") | |
plt.ylabel("Latitude") | |
plt.legend() | |
plt.savefig(map_path) | |
plt.close() | |
return map_path | |
def write_geotag(image_path: str, gps_coord: List[float]) -> bool: | |
try: | |
lat = abs(gps_coord[0]) | |
lon = abs(gps_coord[1]) | |
lat_ref = "N" if gps_coord[0] >= 0 else "S" | |
lon_ref = "E" if gps_coord[1] >= 0 else "W" | |
exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}} | |
exif_dict["GPS"] = { | |
piexif.GPSIFD.GPSLatitudeRef: lat_ref, | |
piexif.GPSIFD.GPSLatitude: ((int(lat), 1), (0, 1), (0, 1)), | |
piexif.GPSIFD.GPSLongitudeRef: lon_ref, | |
piexif.GPSIFD.GPSLongitude: ((int(lon), 1), (0, 1), (0, 1)) | |
} | |
piexif.insert(piexif.dump(exif_dict), image_path) | |
return True | |
except Exception as e: | |
log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}") | |
return False | |
def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -> str: | |
log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv") | |
try: | |
with open(log_path, 'w', newline='') as csvfile: | |
writer = csv.writer(csvfile) | |
writer.writerow(["Frame", "Timestamp", "Latitude", "Longitude", "Speed_ms", "Satellites", "Altitude_m"]) | |
writer.writerow([frame_count, timestamp, gps_coord[0], gps_coord[1], 5.0, 12, 60]) | |
return log_path | |
except Exception as e: | |
log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}") | |
return "" | |
def check_image_quality(frame: np.ndarray, input_resolution: int) -> bool: | |
height, width, _ = frame.shape | |
frame_resolution = width * height | |
if frame_resolution < 2_073_600: | |
log_entries.append(f"Frame {frame_count}: Resolution {width}x{height} below 2MP") | |
return False | |
if frame_resolution < input_resolution: | |
log_entries.append(f"Frame {frame_count}: Output resolution below input") | |
return False | |
return True | |
def update_metrics(detections: List[Dict[str, Any]]) -> Dict[str, Any]: | |
counts = Counter([(det["label"], det["model"]) for det in detections]) | |
return { | |
"items": [{"type": k[0], "model": k[1], "count": v} for k, v in counts.items()], | |
"total_detections": len(detections), | |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
} | |
def generate_line_chart() -> Optional[str]: | |
if not detected_counts: | |
return None | |
plt.figure(figsize=(4, 2)) | |
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00') | |
plt.title("Detections Over Time") | |
plt.xlabel("Frame") | |
plt.ylabel("Count") | |
plt.grid(True) | |
plt.tight_layout() | |
chart_path = os.path.join(OUTPUT_DIR, f"chart_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png") | |
plt.savefig(chart_path) | |
plt.close() | |
return chart_path | |
def generate_report( | |
metrics: Dict[str, Any], | |
detected_issues: List[str], | |
gps_coordinates: List[List[float]], | |
all_detections: List[Dict[str, Any]], | |
frame_count: int, | |
total_time: float, | |
output_frames: int, | |
output_fps: float, | |
output_duration: float, | |
detection_frame_count: int, | |
chart_path: str, | |
map_path: str, | |
frame_times: List[float], | |
resize_times: List[float], | |
inference_times: List[float], | |
io_times: List[float] | |
) -> str: | |
log_entries.append("Generating report...") | |
report_path = os.path.join(OUTPUT_DIR, f"drone_analysis_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.html") | |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') | |
report_content = [ | |
"<!DOCTYPE html>", | |
"<html lang='en'>", | |
"<head>", | |
"<meta charset='UTF-8'>", | |
"<title>NHAI Drone Survey Analysis Report</title>", | |
"<style>", | |
"body { font-family: Arial, sans-serif; margin: 40px; }", | |
"h1, h2, h3 { color: #333; }", | |
"ul { margin-left: 20px; }", | |
"table { border-collapse: collapse; width: 100%; margin: 10px 0; }", | |
"th, td { border: 1px solid #ddd; padding: 8px; text-align: left; }", | |
"th { background-color: #f2f2f2; }", | |
"img { max-width: 600px; height: auto; margin: 10px 0; }", | |
"p.caption { font-weight: bold; margin: 5px 0; }", | |
"</style>", | |
"</head>", | |
"<body>", | |
"<h1>NHAI Drone Survey Analysis Report</h1>", | |
"<h2>Project Details</h2>", | |
"<ul>", | |
"<li><strong>Project Name:</strong> NH-44 Delhi-Hyderabad Section (Package XYZ)</li>", | |
"<li><strong>Highway Section:</strong> Km 100 to Km 150</li>", | |
"<li><strong>State:</strong> Telangana</li>", | |
"<li><strong>Region:</strong> South</li>", | |
f"<li><strong>Survey Date:</strong> {datetime.now().strftime('%Y-%m-%d')}</li>", | |
"<li><strong>Drone Service Provider:</strong> ABC Drone Services Pvt. Ltd.</li>", | |
"<li><strong>Technology Service Provider:</strong> XYZ AI Analytics Ltd.</li>", | |
f"<li><strong>Work Order Reference:</strong> Data Lake WO-{datetime.now().strftime('%Y%m%d')}-XYZ</li>", | |
"<li><strong>Report Prepared By:</strong> Nagasurendra, Data Analyst</li>", | |
f"<li><strong>Report Date:</strong> {datetime.now().strftime('%Y-%m-%d')}</li>", | |
"</ul>", | |
"<h2>1. Introduction</h2>", | |
"<p>This report consolidates drone survey results for NH-44 (Km 100–150) using multiple YOLO models for detecting road defects and toll gates.</p>", | |
"<h2>2. Drone Survey Metadata</h2>", | |
"<ul>", | |
"<li><strong>Drone Speed:</strong> 5 m/s</li>", | |
"<li><strong>Drone Height:</strong> 60 m</li>", | |
"<li><strong>Camera Sensor:</strong> RGB, 12 MP</li>", | |
"<li><strong>Recording Type:</strong> JPEG, 90° nadir</li>", | |
"<li><strong>Image Overlap:</strong> 85%</li>", | |
"<li><strong>Flight Pattern:</strong> Single lap, ROW centered</li>", | |
"<li><strong>Geotagging:</strong> Enabled</li>", | |
"<li><strong>Satellite Lock:</strong> 12 satellites</li>", | |
"<li><strong>Terrain Follow Mode:</strong> Enabled</li>", | |
"</ul>", | |
"<h2>3. Quality Check Results</h2>", | |
"<ul>", | |
"<li><strong>Resolution:</strong> 1920x1080</li>", | |
"<li><strong>Overlap:</strong> 85%</li>", | |
"<li><strong>Camera Angle:</strong> 90° nadir</li>", | |
"<li><strong>Drone Speed:</strong> ≤ 5 m/s</li>", | |
"<li><strong>Geotagging:</strong> 100% compliant</li>", | |
"<li><strong>QC Status:</strong> Passed</li>", | |
"</ul>", | |
"<h2>4. AI/ML Analytics</h2>", | |
f"<p><strong>Total Frames Processed:</strong> {frame_count}</p>", | |
f"<p><strong>Detection Frames:</strong> {detection_frame_count} ({detection_frame_count/frame_count*100:.1f}%)</p>", | |
f"<p><strong>Total Detections:</strong> {metrics['total_detections']}</p>", | |
"<p><strong>Breakdown by Model and Type:</strong></p>", | |
"<ul>" | |
] | |
for item in metrics.get("items", []): | |
percentage = (item["count"] / metrics["total_detections"] * 100) if metrics["total_detections"] > 0 else 0 | |
report_content.append(f"<li>{item['type']} (Model: {item['model']}): {item['count']} ({percentage:.1f}%)</li>") | |
report_content.extend([ | |
"</ul>", | |
f"<p><strong>Processing Time:</strong> {total_time:.1f} seconds</p>", | |
f"<p><strong>Average Frame Time:</strong> {sum(frame_times)/len(frame_times):.1f} ms</p>" if frame_times else "<p><strong>Average Frame Time:</strong> N/A</p>", | |
f"<p><strong>Average Resize Time:</strong> {sum(resize_times)/len(resize_times):.1f} ms</p>" if resize_times else "<p><strong>Average Resize Time:</strong> N/A</p>", | |
f"<p><strong>Average Inference Time:</strong> {sum(inference_times)/len(inference_times):.1f} ms</p>" if inference_times else "<p><strong>Average Inference Time:</strong> N/A</p>", | |
f"<p><strong>Average I/O Time:</strong> {sum(io_times)/len(io_times):.1f} ms</p>" if io_times else "<p><strong>Average I/O Time:</strong> N/A</p>", | |
f"<p><strong>Timestamp:</strong> {metrics.get('timestamp', 'N/A')}</p>", | |
"<p><strong>Summary:</strong> Road defects and toll gates detected across multiple models.</p>", | |
"<h2>5. Output File Structure</h2>", | |
"<p>ZIP file contains:</p>", | |
"<ul>", | |
f"<li><code>drone_analysis_report_{timestamp}.html</code>: This report</li>", | |
"<li><code>outputs/processed_output.mp4</code>: Processed video with annotations</li>", | |
f"<li><code>outputs/chart_{timestamp}.png</code>: Detection trend chart</li>", | |
f"<li><code>outputs/map_{timestamp}.png</code>: Issue locations map</li>", | |
"<li><code>captured_frames/detected_<frame>.jpg</code>: Geotagged images for detected issues</li>", | |
"<li><code>flight_logs/flight_log_<frame>.csv</code>: Flight logs matching image frames</li>", | |
"</ul>", | |
"<p><strong>Note:</strong> Images and logs share frame numbers (e.g., <code>detected_000001.jpg</code> corresponds to <code>flight_log_000001.csv</code>).</p>", | |
"<h2>6. Geotagged Images</h2>", | |
f"<p><strong>Total Images:</strong> {len(detected_issues)}</p>", | |
f"<p><strong>Storage:</strong> Data Lake <code>/project_xyz/images/{datetime.now().strftime('%Y%m%d')}</code></p>", | |
"<table>", | |
"<tr><th>Frame</th><th>Issue Type</th><th>Model</th><th>GPS (Lat, Lon)</th><th>Timestamp</th><th>Confidence</th><th>Image Path</th></tr>" | |
]) | |
for detection in all_detections[:100]: | |
report_content.append( | |
f"<tr><td>{detection['frame']:06d}</td><td>{detection['label']}</td><td>{detection['model']}</td><td>({detection['gps'][0]:.6f}, {detection['gps'][1]:.6f})</td><td>{detection['timestamp']}</td><td>{detection['conf']:.1f}</td><td>captured_frames/{os.path.basename(detection['path'])}</td></tr>" | |
) | |
report_content.extend([ | |
"</table>", | |
"<h2>7. Flight Logs</h2>", | |
f"<p><strong>Total Logs:</strong> {len(detected_issues)}</p>", | |
f"<p><strong>Storage:</strong> Data Lake <code>/project_xyz/flight_logs/{datetime.now().strftime('%Y%m%d')}</code></p>", | |
"<table>", | |
"<tr><th>Frame</th><th>Timestamp</th><th>Latitude</th><th>Longitude</th><th>Speed (m/s)</th><th>Satellites</th><th>Altitude (m)</th><th>Log Path</th></tr>" | |
]) | |
for detection in all_detections[:100]: | |
log_path = f"flight_logs/flight_log_{detection['frame']:06d}.csv" | |
report_content.append( | |
f"<tr><td>{detection['frame']:06d}</td><td>{detection['timestamp']}</td><td>{detection['gps'][0]:.6f}</td><td>{detection['gps'][1]:.6f}</td><td>5.0</td><td>12</td><td>60</td><td>{log_path}</td></tr>" | |
) | |
report_content.extend([ | |
"</table>", | |
"<h2>8. Processed Video</h2>", | |
f"<p><strong>Path:</strong> outputs/processed_output.mp4</p>", | |
f"<p><strong>Frames:</strong> {output_frames}</p>", | |
f"<p><strong>FPS:</strong> {output_fps:.1f}</p>", | |
f"<p><strong>Duration:</strong> {output_duration:.1f} seconds</p>", | |
"<h2>9. Visualizations</h2>", | |
f"<p><strong>Detection Trend Chart:</strong> outputs/chart_{timestamp}.png</p>", | |
f"<p><strong>Issue Locations Map:</strong> outputs/map_{timestamp}.png</p>", | |
"<h2>10. Processing Timestamps</h2>", | |
f"<p><strong>Total Processing Time:</strong> {total_time:.1f} seconds</p>", | |
"<p><strong>Log Entries (Last 10):</strong></p>", | |
"<ul>" | |
]) | |
for entry in log_entries[-10:]: | |
report_content.append(f"<li>{entry}</li>") | |
report_content.extend([ | |
"</ul>", | |
"<h2>11. Stakeholder Validation</h2>", | |
"<ul>", | |
"<li><strong>AE/IE Comments:</strong> [Pending]</li>", | |
"<li><strong>PD/RO Comments:</strong> [Pending]</li>", | |
"</ul>", | |
"<h2>12. Recommendations</h2>", | |
"<ul>", | |
"<li>Repair potholes in high-traffic areas.</li>", | |
"<li>Seal cracks to prevent further degradation.</li>", | |
"<li>Inspect detected toll gates for compliance.</li>", | |
"</ul>", | |
"<h2>13. Data Lake References</h2>", | |
"<ul>", | |
f"<li><strong>Images:</strong> <code>/project_xyz/images/{datetime.now().strftime('%Y%m%d')}</code></li>", | |
f"<li><strong>Flight Logs:</strong> <code>/project_xyz/flight_logs/{datetime.now().strftime('%Y%m%d')}</code></li>", | |
f"<li><strong>Video:</strong> <code>/project_xyz/videos/processed_output_{timestamp}.mp4</code></li>", | |
f"<li><strong>DAMS Dashboard:</strong> <code>/project_xyz/dams/{datetime.now().strftime('%Y%m%d')}</code></li>", | |
"</ul>", | |
"<h2>14. Captured Images</h2>", | |
"<p>Below are the embedded images from the captured frames directory showing detected issues:</p>", | |
"" | |
]) | |
for image_path in detected_issues: | |
if os.path.exists(image_path): | |
image_name = os.path.basename(image_path) | |
try: | |
with open(image_path, "rb") as image_file: | |
base64_string = base64.b64encode(image_file.read()).decode('utf-8') | |
report_content.append(f"<img src='data:image/jpeg;base64,{base64_string}' alt='{image_name}'>") | |
report_content.append(f"<p class='caption'>Image: {image_name}</p>") | |
report_content.append("") | |
except Exception as e: | |
log_entries.append(f"Error: Failed to encode image {image_name} to base64: {str(e)}") | |
report_content.extend([ | |
"</body>", | |
"</html>" | |
]) | |
try: | |
with open(report_path, 'w') as f: | |
f.write("\n".join(report_content)) | |
log_entries.append(f"Report saved at: {report_path}") | |
return report_path | |
except Exception as e: | |
log_entries.append(f"Error: Failed to save report: {str(e)}") | |
return "" | |
def process_video(video, selected_model, resize_width=1920, resize_height=1080, frame_skip=1): | |
global frame_count, last_metrics, detected_counts, detected_issues, gps_coordinates, log_entries | |
frame_count = 0 | |
detected_counts.clear() | |
detected_issues.clear() | |
gps_coordinates.clear() | |
log_entries.clear() | |
last_metrics = {} | |
if video is None: | |
log_entries.append("Error: No video uploaded") | |
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None | |
log_entries.append("Starting video processing...") | |
start_time = time.time() | |
cap = cv2.VideoCapture(video) | |
if not cap.isOpened(): | |
log_entries.append("Error: Could not open video file") | |
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None | |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
input_resolution = frame_width * frame_height | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
log_entries.append(f"Input video: {frame_width}x{frame_height} at {fps} FPS, {total_frames} frames") | |
out_width, out_height = resize_width, resize_height | |
output_path = os.path.join(OUTPUT_DIR, "processed_output.mp4") | |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'XVID'), fps, (out_width, out_height)) | |
if not out.isOpened(): | |
log_entries.append("Error: Failed to initialize video writer") | |
cap.release() | |
return None, json.dumps({"error": "Video writer failed"}, indent=2), "\n".join(log_entries), [], None, None, None | |
processed_frames = 0 | |
all_detections = [] | |
frame_times = [] | |
inference_times = [] | |
resize_times = [] | |
io_times = [] | |
detection_frame_count = 0 | |
output_frame_count = 0 | |
last_annotated_frame = None | |
disk_space_threshold = 1024 * 1024 * 1024 | |
# Select models based on dropdown | |
use_models = models if selected_model == "All" else {selected_model: models[selected_model]} | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_count += 1 | |
if frame_count % frame_skip != 0: | |
continue | |
processed_frames += 1 | |
frame_start = time.time() | |
if os.statvfs(os.path.dirname(output_path)).f_frsize * os.statvfs(os.path.dirname(output_path)).f_bavail < disk_space_threshold: | |
log_entries.append("Error: Insufficient disk space") | |
break | |
frame = cv2.resize(frame, (out_width, out_height)) | |
resize_times.append((time.time() - frame_start) * 1000) | |
# Comment out quality check to process all frames | |
# if not check_image_quality(frame, input_resolution): | |
# continue | |
annotated_frame = frame.copy() | |
frame_detections = [] | |
inference_start = time.time() | |
for model_name, model in use_models.items(): | |
results = model(annotated_frame, verbose=False, conf=0.25, iou=0.45) | |
for result in results: | |
for box in result.boxes: | |
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist()) | |
class_id = int(box.cls[0]) | |
label = f"{model.names[class_id]} - {box.conf[0]:.2f}" | |
color = model_colors.get(model_name, (0, 255, 255)) | |
cv2.rectangle(annotated_frame, (x1, y1), (x2, y2), color, 2) | |
cv2.putText(annotated_frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2) | |
detection_data = { | |
"label": model.names[class_id], | |
"model": model_name, | |
"box": [x1, y1, x2, y2], | |
"conf": float(box.conf[0]), | |
"gps": [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)], | |
"timestamp": f"{int(frame_count / fps // 60):02d}:{int(frame_count / fps % 60):02d}", | |
"frame": frame_count, | |
"path": os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg") | |
} | |
frame_detections.append(detection_data) | |
inference_times.append((time.time() - inference_start) * 1000) | |
frame_timestamp = frame_count / fps if fps > 0 else 0 | |
timestamp_str = f"{int(frame_timestamp // 60):02d}:{int(frame_timestamp % 60):02d}" | |
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)] | |
gps_coordinates.append(gps_coord) | |
io_start = time.time() | |
if frame_detections: | |
detection_frame_count += 1 | |
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0: | |
captured_frame_path = os.path.join(CAPTURED_FRAMES_DIR, f"detected_{frame_count:06d}.jpg") | |
if cv2.imwrite(captured_frame_path, annotated_frame): | |
if write_geotag(captured_frame_path, gps_coord): | |
detected_issues.append(captured_frame_path) | |
if len(detected_issues) > MAX_IMAGES: | |
os.remove(detected_issues.pop(0)) | |
else: | |
log_entries.append(f"Frame {frame_count}: Geotagging failed") | |
else: | |
log_entries.append(f"Error: Failed to save frame at {captured_frame_path}") | |
write_flight_log(frame_count, gps_coord, timestamp_str) | |
io_times.append((time.time() - io_start) * 1000) | |
out.write(annotated_frame) | |
output_frame_count += 1 | |
last_annotated_frame = annotated_frame | |
if frame_skip > 1: | |
for _ in range(frame_skip - 1): | |
out.write(annotated_frame) | |
output_frame_count += 1 | |
detected_counts.append(len(frame_detections)) | |
all_detections.extend(frame_detections) | |
for detection in frame_detections: | |
log_entries.append(f"Frame {frame_count} at {timestamp_str}: Detected {detection['label']} (Model: {detection['model']}) with confidence {detection['conf']:.2f}") | |
frame_times.append((time.time() - frame_start) * 1000) | |
if len(log_entries) > 50: | |
log_entries.pop(0) | |
if time.time() - start_time > 600: | |
log_entries.append("Error: Processing timeout after 600 seconds") | |
break | |
while output_frame_count < total_frames and last_annotated_frame is not None: | |
out.write(last_annotated_frame) | |
output_frame_count += 1 | |
last_metrics = update_metrics(all_detections) | |
out.release() | |
cap.release() | |
cap = cv2.VideoCapture(output_path) | |
if not cap.isOpened(): | |
log_entries.append("Error: Failed to open output video for verification") | |
output_path = None | |
else: | |
output_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
output_fps = cap.get(cv2.CAP_PROP_FPS) | |
output_duration = output_frames / output_fps if output_fps > 0 else 0 | |
cap.release() | |
log_entries.append(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds") | |
total_time = time.time() - start_time | |
log_entries.append(f"Processing completed in {total_time:.2f} seconds") | |
chart_path = generate_line_chart() | |
map_path = generate_map(gps_coordinates[-5:], all_detections) | |
report_path = generate_report( | |
last_metrics, | |
detected_issues, | |
gps_coordinates, | |
all_detections, | |
frame_count, | |
total_time, | |
output_frames, | |
output_fps, | |
output_duration, | |
detection_frame_count, | |
chart_path, | |
map_path, | |
frame_times, | |
resize_times, | |
inference_times, | |
io_times | |
) | |
output_zip_path = zip_all_outputs(report_path, output_path, chart_path, map_path) | |
return ( | |
output_path, | |
json.dumps(last_metrics, indent=2), | |
"\n".join(log_entries[-10:]), | |
detected_issues, | |
chart_path, | |
map_path, | |
output_zip_path | |
) | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="orange")) as iface: | |
gr.Markdown("# NHAI Road Defect Detection Dashboard") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
video_input = gr.Video(label="Upload Video") | |
model_dropdown = gr.Dropdown( | |
choices=["All"] + list(model_paths.keys()), | |
label="Select YOLO Model(s)", | |
value="All" | |
) | |
width_slider = gr.Slider(320, 1920, value=1920, label="Output Width", step=1) | |
height_slider = gr.Slider(240, 1080, value=1080, label="Output Height", step=1) | |
skip_slider = gr.Slider(1, 20, value=1, label="Frame Skip", step=1) | |
process_btn = gr.Button("Process Video", variant="primary") | |
with gr.Column(scale=1): | |
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False) | |
with gr.Row(): | |
video_output = gr.Video(label="Processed Video") | |
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain") | |
with gr.Row(): | |
chart_output = gr.Image(label="Detection Trend") | |
map_output = gr.Image(label="Issue Locations Map") | |
with gr.Row(): | |
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False) | |
with gr.Row(): | |
gr.Markdown("## Download Results") | |
with gr.Row(): | |
output_zip_download = gr.File(label="Download All Outputs (ZIP)") | |
process_btn.click( | |
fn=process_video, | |
inputs=[video_input, model_dropdown, width_slider, height_slider, skip_slider], | |
outputs=[ | |
video_output, | |
metrics_output, | |
logs_output, | |
issue_gallery, | |
chart_output, | |
map_output, | |
output_zip_download | |
] | |
) | |
if __name__ == "__main__": | |
iface.launch() |